NIST Cyber-Physical Systems Program

Chris Greer Senior Executive for Cyber-Physical Systems

NIST National Institute of Standards and Technology • U.S. Department of Commerce

- CPS Framework Aspects and Facets
- Framework and Formal Logic
- Trustworthiness and Cybersecurity

CPS Framework - NIST CPS Public Working Group

Framework Ver. 1.0							
Published May 2016	Data Interop	Timing	Security	Use Cases	Reference Arch	Co-Chairs	
	Marty Burns	Marc Weiss	Vicky Pillitteri, Steve Quinn	Eric Simmon	Abdella Battou	NIST	
Framework for Cyber-Physical Systems	Larry Lannom	Hugh Melvin	Bill Sanders	John Baras	Janos Sztipanovits	Academia	
Release 1.0 May 2016	Peggy relan, Eve Schooler	Sundeep Chandhoke	Claire Vishik	Stephen Mellor	Stephen Mellor, Shi-Wan Lin, Ed Griffor (now at NIST)	Industry	
Cyber Physical Systems Public Working Group		Co-Leads: Ed Griffor, Dave Wollman					
		pages.nist.gov/cpspwg					

NIST National Institute of Standards and Technology • U.S. Department of Commerce

engineering laboratory

• CPS Framework – Aspects and Facets

- Framework and Formal Logic
- Trustworthiness and Cybersecurity

A privacy protected message exchange might consist of the simultaneous (set of) properties: {Trustworthiness.Security.Cybersecurity.Confidentiality.Encryption.AES, Trustworthiness.Privacy.Predictability.Controls.Authorization.OAuth}

Interactions between Concerns

- The conceptualization facet provides **functional decomposition**
- The **tree of concerns** provides:
 - the decomposition of concerns (such as Security, decomposed into Physical Security and Cybersecurity)
 - Is a schema for applying concerns to a CPS

Concerns and their Interaction Calculus

Derivation of a property P for a CPS function in a context of concerns:

<f a function, concern context Γ , property P>, denoted by $\Gamma \vdash P(f)$

Consisting of:

- **CPS function** f from the Business and Use Case of a CPS
- Γ a 'path' through the Concern Tree, rooted in the Aspects and providing context for the function f
- requires the property P of the function f

Example: A secure, privacy-protected message exchange might consist of the simultaneous (set of) properties:

- <f = message exchange, Γ = Trustworthiness.Security.Cybersecurity.Confidentiality.Encryption, P=AES(.)>
- <f = message exchange, Γ' = Trustworthiness.Privacy.Predictability.Controls.Authorization, P'=OAuth(.)>
 Define the function denoted by f to be [f] = {g | g has properties Trustworthiness.Security.Cybersecurity.Confidentiality.Encryption.AES,
 Trustworthiness.Privacy.Predictability.Controls.Authorization.OAuth}

Framework Functional Decomposition

Properties of System Functions (Example)

Safety – vehicle provides its function safely/without collision

Safety – vehicle provides/maintains safe stopping distance

Safety -braking function reacts as required

Safety – friction function provides appropriate friction

Safety – stopping algorithm function has safe stopping

Safety – messaging function receives distance to obstacles and speed from propulsion function

Safety – distance and speed info is understood by braking function

Functions as Sets of Properties

CPS Framework: The Interaction Calculus

Example Impact of one concern on another:

- Calculated using pathways through the up- or down-regulation relationships between the Properties of the CPS
- These correspond to derivatives (an incremental change in one results in a negative or positive impact on the other)
- Impact is the 'integral' over all pathways

- CPS Framework Aspects and Facets
- Framework and Formal Logic
- Trustworthiness and Cybersecurity

Trustworthiness and Cybersecurity

Trustworthiness <Safety.Reliability.Security.Resilience.Privacy>

Using physical dynamics to detect intrusions

The null space of H is analogous to collision resistance criteria for hash functions used to secure passwords.

Consider the recent trend towards using noCaptcha reCaptchas to identify bot/ brute force attacks on the hashing algorithm.

- Knowledge about dynamic state variables
- Higher fidelity models of transients
- Probabilistic dependencies between state variables
- Electrical correlation + Environmental correlation

We are at a unique position in being able to do this with advent of sensing and measurement investments made to the power system to capture dynamic or transient states.

Physical Attestation in the Smart Grid for Distributed State Verification

Thomas Roth, Member, IEEE, Bruce McMillin, Senior Member, IEEE,

DOI 10.1109/TDSC.2016.2577021

Physical Attestation

- A distributed security mechanism that utilizes physical invariant violations to detect malicious peers.
- Programmed into the distributed grid intelligence (DGI) at smart inverters.

Physical Invariants

- The physical system must satisfy a set of physical laws which are system invariants that hold throughout system execution.
- Conservation of Power at b: $\{I_b: P_{ab} + P_b P_{bc} = 0\}$

If I_b is violated, then at least 1 of {P_{ab}, P_b, P_{bc}} must be falsified.

Outline

- CPS Framework Aspects and Facets
- Framework and Formal Logic
- Trustworthiness and Cybersecurity

For additional information

- Program Web Site:
 www.nist.gov/cps
- CPS Public Working Group www.nist.gov/cps/cpspwg.cfm
- CPS Framework Release 1.0 https://pages.nist.gov/cpspwg
- Contact:

edward.griffor@nist.gov