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OpenFog Overview 

Digital innovation from the Internet of Things (IoT), Artificial Intelligence, 
Virtual Reality, Tactile Internet and 5G applications is transforming the way 

we work, commute, shop and play. Data from newly-connected factories, 

homes, communities, cars, hospitals and more is expected to grow from 1.1 
zettabytes (or 89 exabytes) per year in 2016 to 2.3 zettabytes (or 194 

exabytes) per year by 2020.1 Current “cloud-only” architectures cannot keep 
up with the volume and velocity of this data across the network, thereby 

reducing the value that can be created and captured from these 
investments.  

Fog computing provides the missing link in the cloud-to-thing continuum. 
Fog architectures selectively move compute, storage, communication, 
control, and decision making closer to the network edge where data is being 

generated in order solve the limitations in current infrastructure to enable 

mission-critical, data-dense use cases.  

Fog computing is a: 

A horizontal, system-level architecture that distributes 
computing, storage, control and networking functions closer to 

the users along a cloud-to-thing continuum.  

Fog computing is an extension of the traditional cloud-based computing 
model where implementations of the architecture can reside in multiple 
layers of a network’s topology. However, all the benefits of cloud should be 

preserved with these extensions to fog, including containerization, 
virtualization, orchestration, manageability, and efficiency. In many cases, 

fog computing works with cloud. Pillars, which are common themes of the 
OpenFog reference architecture include security, scalability, openness, 

autonomy, RAS (reliability, availability and serviceability), agility, hierarchy, 
and programmability. In addition to the pillars, we describe the roles of each 

stakeholder in the fog value chain from silicon creator to the Operating 

System and application developer through a composite architectural 
description  

Fog computing also is often erroneously called edge computing, but there 
are key differences. Fog works with the cloud, whereas edge is defined by 
the exclusion of cloud. Fog is hierarchical, where edge tends to be limited to 

a small number of layers. In additional to computation, fog also addresses 
networking, storage, control and acceleration. 
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The OpenFog Consortium was formed on the principle that an open fog 

computing architecture is necessary in today’s increasingly connected world. 
Through an independently run open membership ecosystem of industry, end 

users and universities, we can apply a broad coalition of knowledge to these 
technical and market challenges. We believe that proprietary or single 

vendor solutions can limit supplier diversity and ecosystems, resulting in a 
detrimental impact on market adoption, system cost, quality and innovation. 

It is our intent to ensure the OpenFog reference architecture results in fully 
interoperable and secure systems, supported by a vibrant supplier 

ecosystem.  
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1 About Fog Computing and the 

Consortium 

 OpenFog Reference Architecture Overview 

The OpenFog Consortium was founded by ARM, Cisco, Dell, Intel, Microsoft 

and Princeton University in November 2015. Through its global membership 
of leading technology & networking players, fog computing entrepreneurs 

and university researchers, the Consortium is helping to enable game-
changing innovation enabled by fog computing through an open architectural 

framework.  
 

We are guided by the OpenFog Board of Directors and the OpenFog 
Technical Committee. The technical committee is the technical governing 

body of all of the working groups of the Consortium. The chair of this group 
is elected by a vote of the OpenFog Board of Directors and reports directly to 

the board.  
 

The OpenFog Reference Architecture (OpenFog RA) is intended to help 
business leaders, software developers, silicon architects, and system 

designers create and maintain the hardware, software and system elements 

necessary for fog computing. 
 

Many different technical workgroups in the Consortium are responsible for 
the different aspects of this reference architecture, including: 

Communications, Software-Infrastructure and Security. The Architecture 
Framework workgroup is tasked with the creation and maintenance of this 

document and other technical publications of the Consortium. All new 
technical topics requiring investigation are assigned to this group. The 

charter of each group is managed and approved by the technical committee 
and Board of Directors.  

 
For further information on these groups or how to participate, please 

reference www.openfogconsortium.org.  

http://www.openfogconsortium.org/
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2 Areas of Opportunity 

 OpenFog Reference Architecture Content 

 

The OpenFog RA is part of a suite of documents under construction by the 
OpenFog Consortium and our technical liaisons partners. It is a medium- to 

high-level view of system architectures for fog nodes and networks. Future 
documents will provide lower-level details, including formal, enumerated 

requirements that will form the basis of quantitative testbeds and the 

specified interoperability of fog elements. Future documents will also refine 
the use cases described in Chapter 3.  

 
The OpenFog RA is divided into the following chapters: 

 Chapter 2 describes the OpenFog Consortium’s mission and plans to 
accelerate fog computing. It also provides an overview of the OpenFog 

RA. 
 Chapter 3 presents some use cases where we see fog computing 

emerging. This list will grow and evolve as the OpenFog RA is refined. 
 Chapter 4 describes the pillars of the OpenFog architecture. These are 

the guiding principles for the OpenFog RA. 
 Chapter 5 provides an in-depth look at the full OpenFog RA. This 

section shows the abstract Architectural Description (AD) for the 
OpenFog RA.  

 Chapter 6 starts the conversation on adherence to the OpenFog 

architecture. It is our intention to drive standardization across the 
various interfaces. 

 Chapter 7 shows the abstract OpenFog RA applied to various use 
cases. This will further clarify each aspect of the OpenFog RA and what 

needs to be done for a successful implementation. 
 Chapter 8 contains some of the open areas of fog computing and new 

opportunities for research. OpenFog member companies and academic 
organizations are continually enhancing and refining the OpenFog RA. 

This section will help advance the overall architecture over time. 
 

 The Internet of Things, Cloud and the OpenFog RA 

The Internet of Things (IoT) is driving business transformation by connecting 
everyday objects and devices to one another and to cloud-hosted services. 
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Current deployment models emphasize mandatory cloud connectivity; 

however, this is not feasible in many real-world situations. These are two of 
the primary issues with connecting edge devices to the cloud for all services: 

 Connected devices are creating data at an exponentially growing rate, 
which will drive performance and network congestion challenges at the 
edge of infrastructure. 

 There are performance, security, bandwidth, reliability, and many 
other concerns that make cloud-only solutions impractical for many 

use cases. 

Unfettered cloud-only architectural approaches cannot sustain the projected 

data velocity and volume requirements of the IoT. To sustain IoT 
momentum, the OpenFog Consortium is defining an architecture to address 

infrastructure and connectivity challenges by emphasizing information 
processing and intelligence at the logical edge. This approach is called fog 

computing. 

 

 
Figure 1 Unfettered Cloud Computing 

While the cloud itself may play a vital role in many deployments, fog 

computing represents a shift from traditional closed systems and a reliance 
on cloud-only focused models. Fog computing is complementary to, and an 

extension of, traditional cloud-based models.  

The fog computing model moves computation from the cloud closer the 

edge, and potentially right up to the IoT sensors and actuators. The 
computational, networking, storage and acceleration elements of this new 

model are known as fog nodes. These are not completely fixed to the 
physical edge, but should be seen as fluid system of connectivity.  
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 OpenFog and Other Consortia 

The OpenFog Consortium invites open participation from across industry, 
academia and non-profit organizations that have an interest in the emerging 
IoT landscape. The mission of the OpenFog Consortium is complementary to 

other IoT and technology industry alliance groups including the Industrial 
Internet Consortium (IIC), ETSI-MEC (Mobile Edge Computing), OPC-UA, 

Open Connectivity Foundation (OCF), OpenNFV, and many others. To avoid 

duplication of effort and market confusion, the OpenFog Consortium will de-
emphasize efforts to optimize for some of these application spaces, and 

instead focus on optimally serving vertical markets not addressed by other 
initiatives. In the longer term, through liaisons with these and other bodies, 

we will drive more convergence across the IoT industry under a common 
view of edge and fog architectures.  

 
Figure 2 OpenFog Consortium and Other Consortia 
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3 Use Cases for Fog 

Fog computing targets cross-cutting concerns like the control of 
performance, latency and efficiency are also key to the success of fog 

networks. Cloud and fog computing are on a mutually beneficial, inter-
dependent continuum.  

Certain functions are naturally more advantageous to carry out in fog nodes, 
while others are better suited to cloud. The traditional backend cloud will 

continue to remain an important part of computing systems as fog 
computing emerges. The segmentation of what tasks go to fog and what 

goes to the backend cloud are application specific. This segmentation could 
be planned, but also change dynamically if the network state changes in 

areas like processor loads, link bandwidths, storage capacities, fault events, 
security threats, cost targets, etc.  

The OpenFog RA enables fog-cloud and fog-fog interfaces. OpenFog 
architectures offer several unique advantages over other approaches, which 
we term SCALE:  

 Security: Additional security to ensure safe, trusted transactions 
 Cognition: awareness of client-centric objectives to enable autonomy 

 Agility: rapid innovation and affordable scaling under a common 
infrastructure 

 Latency: real-time processing and cyber-physical system control  
 Efficiency: dynamic pooling of local unused resources from 

participating end-user devices 

A quick use case example to illustrate the value of fog: Consider an oil 

pipeline with pressure and flow sensors and control valves. One could 
transport all those sensor readings to the cloud (perhaps using expensive 

satellite links) analyze the readings in cloud servers to detect abnormal 
conditions, and send commands back to adjust the positon of the valves.  

There are several problems with this scenario: the bandwidth to transport 
the sensor and actuator data to and from the cloud could cost many 
thousands of dollars per month; those connections could be susceptible to 

hackers; it may take several hundred milliseconds to react to an abnormal 

sensor reading (during which time a major leak could spill significant oil); 
and if the connection to the cloud is down, or the cloud is overloaded, 

control is lost. 
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Now, consider placing a hierarchy of local fog nodes near the pipeline. They 

can connect to sensors and actuators with inexpensive local networking 
facilities. Fog nodes can be highly secure, lessening the hacker threat. Fog 

nodes can react to abnormal conditions in milliseconds, quickly closing 
valves to greatly reduce the severity of spills. Local control in the fog nodes 

produces a more robust control system. Moving most of the decision-making 
functions of this control system to the fog, and only contacting the cloud 

occasionally to report status or receive commands, creates a superior control 
system. 

This document describes a set of high-level attributes of fog computing that 
we call the pillars (including some of the fog advantages described in the 

pipeline control scenario). These include security, scalability, openness, 
autonomy, reliability, agility, hierarchical organization and programmability. 

We will discuss all of these pillars in detail later in this document.  

Platform as a service (PaaS) is a category of cloud computing services that 
provides a platform allowing customers to develop, run, and manage web 

applications without the complexity of building and maintaining the 
infrastructure typically associated with developing and launching an 

application. OpenFog RA defines the required infrastructure to enable 
building Fog as a Service (FaaS) to address certain classes of business 

challenges. FaaS includes Infrastructure as a Service (IaaS), Platform as a 

Service (PaaS), Software as a Service (SaaS), and many service constructs 
specific to fog. The infrastructure and architecture building blocks below 

show how FaaS may be enabled and will be expanded upon in the reference 
architecture. 

The OpenFog RA describes a generic fog platform that is designed to be 
applicable to any vertical market or application. This architecture is 
applicable across many different markets including, but not limited to, 

transportation, agriculture, smart-cities, smart–buildings, healthcare, 
hospitality, financial services, and more, providing business value for IoT 

applications that require real-time decision making, low latency, improved 

security, and are network-constrained. In this section, we look at a few 
specific use cases. 

 Transportation Scenario: Smart Cars and Traffic 
Control 

In 2016, the average person creates around 650MB of data every day and 
by 2020, some project that to more than double. However smart 

autonomous cars will generate multiple terabytes of data every day from the 
combinations of light detection and ranging (LIDAR), global positioning 
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systems (GPS), cameras, etc. When the smart car is coupled with intelligent 

infrastructure, it is clear that a cloud-only model will not work for 
autonomous transportation, and that a fog computing approach is required. 

Many of the architecture requirements we describe in smart cars and traffic 
control also apply to other transportation areas, such as ships/boats, trains, 

trucks, busses and drones. In this section we will highlight the opportunity 
for fog computing for smart cars and traffic control, and explain how the 

requirements are addressed by the OpenFog RA. The figure below is an 
overview of an intelligent highway application of the OpenFog RA. 

 

 
Figure 3 OpenFog Transportation: Smart Car and Traffic Control System 

The smart car and traffic control use case presents an opportunity to 
examine a fog environment containing a rich set of interactions among 

multiple fog domains as well as multiple cloud domains. Among other things, 
this use case demonstrates: 
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 A rich set of interactions among multiple fog domains, as well as 

multiple cloud domains, including Element Management Systems 
(EMS), service provider (SP), metro traffic services, and system 

manufacturer clouds. 
 Mobile fog nodes supporting vehicle-to-vehicle (V2V), vehicle-to-

infrastructure (V2I), and vehicle-to-x (V2X) interactions. 
 Multiple fog networks owned and operated by different authorities 

providing similar (and different) functionality  
 Multi-tenancy across fog nodes will also be a burgeoning opportunity 

to consolidate multiple fog networks, improving efficiency.  
 Both private and public fog and cloud networks used by a single end 

point device.  
 

This use case shows also shows the hierarchical and distributed advantages 
of a fog architecture. As shown in the figure above, the system includes 

several types of sensors (and actuators) that we refer to as “things.”  

 
Things include roadside sensors (infrastructure) and on-vehicle sensors. 

These sensors provide data so that the various systems (lights, cars, etc.) 
can carry out their given functions (e.g. vehicle driving autonomously). 

Smart transportation systems also manage the actuators that control parts 
of the infrastructure, such as traffic signals, gates, and digital signs.  

 
The vehicles connect to the cloud and a hierarchy of fog nodes that service 

the autonomous vehicle or traffic control systems. 
 

Fog computing nodes in the vehicle 
In this use case example, the vehicle is a mobile fog node that 

communicates with other fog nodes as they become available, an example of 
V2I interactions. The mobile fog node must also be capable of performing all 

required in-vehicle operations autonomously in circumstances where it 

cannot connect to other fog nodes or the cloud. 
 

In-vehicle fog nodes provide services including infotainment, advanced 
driver assistance systems (ADAS), autonomous driving, collision avoidance, 

navigation, etc. Several different networking technologies, including 
Dedicated Short Range Communications (DSRC), cellular (e.g. 3G, LTE, 5G, 

etc.) and other networking technologies securely connect the vehicles to 
each other and the infrastructure.  

 
 

The Transportation Fog Network 
The Transportation Fog Network is comprised of a three-level hierarchy of 

fog nodes.  
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The first level of the hierarchy is the infrastructure fog nodes, or roadside 
fog nodes. At this level, the roadside fog sensors collect data from other 

devices such as roadside cameras. The fog nodes perform some local 
analysis for local action, such as alerting the vehicle about poor road 

conditions, triggering autonomous response to slow down, and perform 
some autonomous functions, even if connections to higher layers are 

unavailable. Data from the first level of interactions is aggregated and sent 
up the fog hierarchy to the second and third levels of the hierarchy—

neighborhood and regional fog nodes—for further analysis and distribution. 
Some of the data may also be distributed east-west to other infrastructure 

nodes for their use. Typically, each fog layer in the hierarchy will provide 
additional processing, storage, and network capabilities in service of the 

vertical application at their level of the hierarchy. For example, higher level 
layers provide additional processing to provide data analytics or large 

storage capacities. 

 
 

Traffic control systems 
Traffic control fog nodes may receive input from other sources, such as 

smart traffic light systems, municipal managers, and cloud-based systems. 
Data flows between the traffic control system, infrastructure fog nodes and 

vehicles in all directions, insuring all levels of the hierarchy have the data 
and control capabilities they need. 

 
 

The goal of the OpenFog RA for smart cars and traffic control is to ensure an 
open, secure, distributed, and scalable architecture that optimizes real time 

capabilities within a multi-supplier ecosystem. The transportation example 
shows a complex system of autonomous things and infrastructure generating 

massive amounts of data. We believe that this use case highlights the need 

for fog computing to enable safe and effective operations in IoT, 5G, AI and 
other advanced scenarios.  

 Visual Security and Surveillance Scenario 

 
Surveillance and security cameras are being deployed worldwide. These 

cameras are used to ensure security of materials, people, and places. In 

addition, these cameras have the ability to generate a massive amount of 
data, which can exceed terabytes per day for a single camera.  

Traditional cloud models that were deployed for low-resolution cameras 
aren’t scalable with the 1080p and 4K cameras because of the sheer 

availability and/or cost of network transport. Additionally, decisions on 
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security need to be made at the camera or installation location and cannot 

be made solely in the cloud. Machine vision is also a prime candidate for 
accelerators and dynamic updating of various algorithms in both hardware 

and software. These cameras are capturing images of people, places, or 
things and are tightly coupled to decision–making, which requires a 

heightened level of security of the camera’s software and hardware assets. 

 
Smart cities, smart homes, retail stores, public transportation, 

manufacturing and enterprises increasingly rely on camera sensors to secure 
people, identify unauthorized access, and increase safety, reliability and 

efficiency. The sheer bandwidth of visual (and other sensor) data being 
collected over a large-scale network makes it impractical to transport all the 

data to the cloud to obtain real-time insights. A particularly demanding 
application space is surveillance of high value installations with many people 

and objects moving through them. Controlling a large network of cameras in 
an airport is a good example of such an application. This use case will be 

studied in greater detail later in this document to illustrate applying the 
architecture to a concrete application. 

 
City-scale deployments that include placing cameras on traffic lights and 

other camera deployments in remote areas don't have high-bandwidth 
connectivity to the cloud to upload the collected video, even if the video 

could fit over the network infrastructure. Real-time monitoring and detection 

of anomalies (intruders into a building, the fall of an elderly citizen, the 
misfiring of a piece of manufacturing equipment) pose strict low latency 

requirements on surveillance systems; timeliness is important from the 
standpoint of both detection and response.  

 
Additionally, privacy concerns must be addressed when using a camera as a 

sensor that collects image data so that the images do not reveal a person's 
identity or reveal confidential contextual information (e.g. intellectual 

property in a manufacturing plant) to any unauthorized parties. OpenFog RA 
deployments provide the opportunity to build real-time, latency-sensitive 

distributed surveillance systems that maintain privacy. It leverages fog 
nodes to intelligently partition video processing between fog nodes co-

located with cameras and the cloud so as to enable real-time tracking, 
anomaly detection, and insights from data collected over long time intervals. 

Video analytics algorithms can be located on fog nodes close to the cameras, 

and take advantage of the heterogeneous processor capability of fog, 
running parts of the video analytics algorithm on conventional processors or 

accelerators.  
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The visual security for airports use case requires all of these fog capabilities 

to meet its performance, reliability, security and efficiency goals. This 
includes vehicle detection, people detection, smart retail, and other areas 

where machine vision via video analytics is important for fog computing. 
Please see the detailed analysis in chapter 7 for many more details including 

an application of the OpenFog RA.  

 Smart Cities Scenario 

 
Figure 4 Opportunities for Smart Cities 

Smart cities are using technology to deal with many challenges, including 

traffic congestion, public safety, energy consumption, sanitation, and public 

internet connectivity.  

The OpenFog RA enables greater efficiency and economic realities of smart 
city operations. The figure above illustrates the various aspects where fog 

computing can impact smart cities including but not limited to: 

 Intelligent city with smart parking, shopping, and infrastructure. 

 Intelligent hospitals linking all aspects for greater patient care and 
healthcare delivery. 

 Intelligent highway systems to optimize utilization of infrastructure. 
 Intelligent factories and software defined industrial systems. 

 
Connectivity 
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While most modern cities have one or more cellular networks providing city-

wide coverage, these networks often have capacity and peak bandwidth 
limits that just barely meet the needs of their existing subscribers. This 

leaves little bandwidth for the advanced municipal services envisioned in a 
smart city. OpenFog RA deployments coupled with 5G technologies provide 

an opportunity to address this concern. Fog nodes can provide local 
processing and storage, and optimize network usage. 

 
Safety and Security 

Smart city planning also includes critical public safety and security 
requirements. For example: 

 Municipal networks carry sensitive traffic and citizen data (e.g., police 
dispatches), and operate life-critical systems (e.g., first responder 
communications) 

 Video security and surveillance systems capture suspicious or unsafe 
conditions (e.g., utility network problems, unauthorized use of public 

spaces, etc.)  

Note that smart cars and traffic congestion, which is covered as a separate 

use case, are also top priorities for smart cities.  

By providing secure data and distributed analytics, fog computing will play a 
key role in addressing public safety and security issues for smart cities.  

3.3.1 Smart Buildings 

Smart buildings may contain thousands of sensors to measure various 
building operating parameters, including temperature, humidity, occupancy, 

door open/close, keycard readers, parking space occupancy, security, 
elevators, and air quality. These sensors capture telemetry data at various 

intervals and transmit this information to a local storage server. Once this 

information is processed (analyzed), controller-driven actuators will adjust 
building conditions as necessary.  

Some of this processing and response is extremely time-sensitive. For 
example, turning on fire suppression systems in response to a fire event or 
locking down an area if an unauthorized person tries to gain entry. Time-

sensitive means real-time response, which requires processing in close 
proximity to the infrastructure devices.  
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The OpenFog RA model can be extended into the building’s control hierarchy 

to create a number of smart, connected spaces within each building. Using 
the hierarchical design of the OpenFog RA, each floor, wing, or even 

individual room could contain its own fog node.  

A fog node could be responsible for: 

 Performing emergency monitoring and response functions. 

 Performing building security functions. 
 Controlling climate and lighting. 

 Providing a more robust compute and storage infrastructure for 
building residents to support smartphones, tablets and desktop 

computers. 

Locally stored operational history can be aggregated and sent to the cloud 
for large-scale analytics. These analytics can be applied to machine learning 

to create optimized models, which are then downloaded to the local fog 
infrastructure for execution.  

 Additional Use Cases 

Fog computing is relevant to many more use cases in addition to those 

highlighted here. The OpenFog Board of Directors and Technical Committee 
will set the most important areas for the Consortium and its partners to 

focus on in the near and long term. We will continue to expand upon all use 
cases in further discussions, publications, and testbeds.  
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4 Pillars of OpenFog RA 

The OpenFog RA is driven by a set of core principles called pillars. These 
pillars form the belief, approach and intent that guided the definition of the 

reference architecture. They represent the key attributes that a system 
needs to embody the OpenFog definition of a horizontal, system-level 

architecture that provides the distribution of computing, storage, control, 
and networking functions closer to the data source (users, things, et al) 

along the cloud-to-thing continuum.  

The following sections describe each pillar of the architecture.  

 

 

Figure 5 Pillars of OpenFog 
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 Security Pillar 

Many IoT applications supported by the OpenFog RA have privacy critical, 
mission critical, and even life critical aspects. As such, any security 

compromise in the fog network can have severe consequences. The OpenFog 
RA, as it abstracts these technologies, will enable the flexible creation of 

computing environments that address a broad spectrum of security concerns 
spanning from IoT devices to cloud and the fog networks in between.  

 
Security in the OpenFog RA is not a one-size-fits-all architecture. Rather, it 

describes all of the mechanisms that can be applied to make a fog node 
secure from silicon to software application. Business case, target market, 

and vertical use case, as well as the location of the node itself, will all create 

a set of requirements for that node. However, there are certain foundational 
parts of the architecture, which must be in place in order to build a secure 

execution environment.  
 

Security implementations have many different descriptions and attributes 
such as privacy, anonymity, integrity, trust, attestation, verification, and 

measurement. These are key attributes for the OpenFog RA. Achieving the 
foundational elements for security requires an approach to discover, attest, 

and verify all smart and connected “things” before trust can be established.  
 

Conformance to the OpenFog RA requirements will ensure that an OpenFog 
deployment will be built on a secure end-to-end compute environment. This 

includes the OpenFog node security, OpenFog network security, and 
OpenFog management and orchestration security. This will allow architects 

and designers to focus on the high-value security and privacy problems 

specific to the types of devices used in their application.  
 

In many applications, particularly for brownfield deployments, or for tiny 
devices and sensors with little to no security capability, an OpenFog node 

may act as a device’s first point of secure entry into an OpenFog compute 
hierarchy and the cloud.  

 
The security pillar of the OpenFog RA starts with a clear definition of base 

building blocks. All fog nodes must employ a hardware-based immutable 
root of trust. The Hardware Root of Trust is a trusted hardware component 

which receives control at power-on. It then extends the chain of trust to 
other hardware, firmware, and software components. The root of trust 

should then be attestable by software agents running within and throughout 
the infrastructure. Because of the proximity to the edge, nodes in fog 

networks often act as the first node of access control and encryption. This 
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means they must provide contextual integrity and isolation, and control 

aggregation of privacy-sensitive data before it leaves the edge.  
 

As more complex topologies are created in FaaS implementations, the 
attestation continues as a chain of trust from the fog node, to other fog 

nodes, and to the cloud. Since fog nodes may also be dynamically 
instantiated or torn down, hardware and software resources should be 

attestable. Components that are not attestable should not be fully allowed to 
participate in the fog node or may not be deemed to have fully trustworthy 

data. 

 Scalability Pillar 

The scalability pillar addresses the dynamic technical and business needs 
behind fog deployments. Elastic scalability cuts across all fog computing 
applications and verticals. The hierarchical properties of fog and its location 

at logical edges of networks add additional scaling opportunities.  

 Individual fog nodes can scale internally, through the addition of 

hardware or software.  
 Fog networks can scale up and out through the addition of fog nodes 

to assist heavily loaded nodes, either on the same level of the fog 
hierarchy or in adjacent levels. 

 A network of fog nodes can be scaled up or down in a demand-driven 
elastic environment. 

 Storage, network connectivity, and analytics services can scale with 
the fog infrastructure. 

Because of the variability in the use cases for fog computing, the OpenFog 
RA enables elastic scaling of modest deployments through large mission 

critical deployments based on demand. This scalability is essential for fog 
computing implementations to adapt to workload, system cost, performance, 

and other changing business needs.  

Scalability may involve many dimensions in fog networks: 

 Scalable performance enables growth of fog capabilities in response 

to application performance demands (e.g., reducing latency between 
sensor reading and resulting actuator responses).  

 Scalable capacity allows fog networks to change in size as more 
applications, endpoints, “things,” users, or objects are added or 

removed from the network. You can add capacity to individual fog 
nodes by adding hardware like processors, storage devices, or network 
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interfaces. You can also add capacity through software and various 

pay-as-you-grow licensing. The converse is also true. 
 Scalable reliability permits the inclusion of optional redundant fog 

capabilities to manage faults or overloads. Redundant fog nodes also 
ensure a large deployment’s integrity and reliability at scale, which is 

part of the reliability, availability, and serviceability (RAS) pillar. There 
are hardware and software aspects to scalable reliability. The 

scalability mechanisms supporting the reliability of fog networks must 
themselves be highly reliable. Availability (which is a scaling measure 

closely related to reliability) scales through similar methods.  
 Scalable security is often achieved through the addition of modules 

(hardware and software) to a basic fog node as its security needs 
become more stringent. Capabilities like scalable distribution, rights 

access, crypto processing capacity, and autonomous security features 
contribute to scalable security. 

 Scalable hardware involves the ability to modify the configuration of 

the internal elements of fog nodes, as well as the numbers of and 
relationships between fog nodes in networks.  

o Processors scale from modest single core CPUs to specialized 
accelerator chips with thousands of cores or millions of gates. 

o Networking scales from a single wireless or wire line interface to 
large arrays of wireless, wire line, and fiber interfaces with 

aggregate capacities of many Gb/s.  
o Storage can scale from a simple flash chip to large arrays of 

flash / rotating disks and network attached file systems. 

These resources can be configured in initial deployments and retrofit into 

existing modular fog nodes on an as-needed basis. It is also possible to scale 
at the network level, by adding arrays of fog nodes at locations in the 

network where single nodes formally managed the entire load. Hardware 
scaling can also be in the downward direction, where modules or entire fog 

nodes that are no longer are needed at a specific location are powered down 
and/or removed (and perhaps reused elsewhere in a fog network where 

there is a higher need. 

 Scalable software is also important and includes applications, 
infrastructure, and management. 

o The management infrastructure of fog must scale to enable the 

efficient deployment and ongoing operation of tens of millions of 
fog nodes in support of billions of smart and connected things. 

o Orchestration must be scalable to manage the partitioning, 
balance, and allocation of resources across the fog network.  

o Analytics as a capability of fog networks has particularly 
aggressive scalability targets. This is because analytics 
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algorithms undergo several orders of magnitude scaling due to 

increased capacity demands and several additional orders of 
magnitude due to ever-increasing sophistication of the analytics 

algorithms.  
o Composability and modularity are important aspects of 

scalability, where individual hardware and software components 
(perhaps numbering in thousands of types and millions of 

instantiations) are assembled into a fog network optimized to 
run the specific applications required.  

Scalability enables fog nodes to provide basic support to address the 
business requirements and enable a pay-as-you-grow model for the FaaS, 

which is essential to the economics of its initial deployment and long-term 
success. 

 Openness Pillar 

Openness is essential for the success of a ubiquitous fog computing 
ecosystem for IoT platforms and applications. Proprietary or single vendor 

solutions can result in limited supplier diversity, which can have a negative 
impact on system cost, quality and innovation. The openness pillar 

importance is highlighted in our desire for fully interoperable systems, 
supported by a vibrant supplier ecosystem. 

Openness as a foundational principle enables fog nodes to exist anywhere in 
a network and span networks. This openness enables pooling by discovery, 

which means that new software-defined fog nodes can be dynamically 
created to solve a business mission. The security pillar shares a common 

theme and requirements in openness characteristics 

 Composability supports portability and fluidity of apps and services 
at instantiation. Additional emphasis of composability is visible in the 

programmability pillar. 
 Interoperability leads to secure discovery of compute, network, and 

storage and enables fluidity and portability during execution. The 
marketplace has clearly articulated its desire for a vibrant supplier 

ecosystem, with reasonable expectations that elements from one 

supplier can be freely substituted for elements from another supplier. 
This will be addressed through testbeds, FogFests (plug fest), 

standardization, and open implementations. 
 Open communication enables features like pooling of resources near 

the edge of the network to collect idle processing power, storage 
capacity, sensing ability, and wireless connectivity. For example, a 
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compute-intensive application developed in fog architecture can 

leverage hundreds of gigabytes sitting idle on nearby laptops, 
systems, and set-top boxes in a household every evening, or among 

the passengers of a public transit system. The open discovery of these 
nearby compute resources is critical. Doing the functional work nearest 

the edge avoids additional network taxes when moving up the stack 
towards the cloud. We define network taxes as the cost of 

transmission. 
 Location transparency of any node instance to ensure that nodes 

can be deployed anywhere in the hierarchy. Location transparency 
provides an alternative to network operator control. This means that 

any IoT device, such as a smart watch, does need its own carrier-
owned data plan. Each thing or software entity can observe its local 

conditions and make decisions on which network to join. Each endpoint 
in a fog network can optimize its path to the computational, 

networking and storage resources it needs (no matter if those 

resources are in the hierarchical layers of the fog, or in the cloud). 

 Autonomy Pillar 

The autonomy pillar enables fog nodes to continue to deliver the designed 

functionality in the face of the external service failures. In this architecture, 
autonomy is supported throughout the hierarchy. Decision making will be 

made at all levels of a deployment’s hierarchy including near the device or 
higher order layers. Centralized decision-making in the cloud is no longer the 

only option. Autonomy at the network edge means intelligence from local 
devices and peer data can be used to fulfill the business’ mission at the point 

where it makes the most business sense.  

The OpenFog RA supports autonomy for a wide range of functions. It does 

not rely upon centralized entity for operation (e.g., a backend cloud). Some 
of the typical areas for autonomy at the edge include:  

 Autonomy of discovery to enable resource discovery and 
registration. For example, an IoT device coming online in the field 
would typically “phone home” first to let the backend cloud know it is 

alive and its associated functions are available. But when an uplink 
network to the cloud is unavailable, it can stop the device from going 

live. An autonomous fog node can potentially act as a proxy for the 
device registration, which then allows the device to come online 

without the backend cloud.  

 Autonomy of orchestration and management (O&M) automates 
the process of bringing services online and managing them through 
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the operational lifecycle and decommissioning. Autonomy of O&M 

entails a number of actions including: instantiation of services; 
provisioning the environment around the services, such as routing of 

data flows; and keeping track of the health and status of the 
resources. All these actions should be as automated as possible 

through programmability and policies. The architecture includes an 
autonomous and scalable O&M function that is set up to handle any 

surge of demand for resources, without real-time reliance on the cloud 
or the need for significant human labor.  

 Autonomy of security enables devices and services to come online, 
authenticate themselves against a minimal set of fog security services, 

and perform their designed functions. In addition, these security 
services can store records for future audits. With autonomy, these 

actions can be performed where they are needed, when they are 
needed, and regardless of connectivity to the cloud. Fog nodes can 

autonomously react to evolving security threats, such as updating 

virus screening algorithms, determination of denial-of-service (DoS) 
attacks, etc. without administrator involvement. 

 Autonomy of operation supports localized decision making by IoT 
systems. Sensors provide data, which is the basis for autonomous 

actions at the edge. If the cloud or a single place in the system’s 
hierarchy is the only location where decisions can be made, this 

violates the ability to ensure reliability and as such, the architecture 
ensure operational autonomy. 

 Cost savings is a key motivator for autonomy. Connectivity today 
costs money. The more data that is sent through the network, the 

higher the costs are for businesses due to network taxes. This drives 
the need for more processing at the edge of the network, with just-in-

need and just-in-time data sent to the cloud as required for additional 
business insights. For example, when an oil rig generates 30,000 data 

points a second, not all of the data must be sent through an expensive 

satellite link. Local and fog domain analytics and pre-processing can 
autonomously filter out the unimportant data points and extract the 

more mission critical ones to be delivered to the next layer in the 
hierarchy. 

A key aspect of fog computing is turning data into actionable wisdom. We 
term this DIKW, which stands for “Data gathered becomes Information 
when stored and retrievable becomes Knowledge. Knowledge enables 

Wisdom for autonomous IoT.” This principle is the basis for localized 
analytics to enable autonomous decision making nearest the edge. 
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 Programmability Pillar 

The programmability pillar enables highly adaptive deployments including 
support for programming at the software and hardware layers. This means 
that re-tasking a fog node or cluster of fog nodes for accommodating 

operational dynamics, can be completely automated. The re-tasking can be 
done with the help of the fog nodes inherent programmability interfaces 

which we describe using general purpose compute or accelerator interfaces. 

Programmability of a fog node includes the following benefits: 

 Adaptive infrastructure for diverse IoT deployment scenarios and 
support changing business needs. 

 Resource efficient deployments maximizing the resources by using 
a multitude of features including containerization. This increases the 

portability of components and is a key design goal enabled by 
programmability. 

 Multi-tenancy to accommodate multiple tenants in a logically isolated 
runtime environment. 

 Economical operations that results adaptive infrastructure to 

changing requirements. 
 Enhanced security to automatically apply patches and respond more 

quickly to evolving threats.  

 Reliability, Availability, and Serviceability (RAS) 
Pillar 

Reliability, availability, and serviceability (RAS) is resident throughout 
successful system architectures and, as such, takes on great importance in 

the OpenFog RA. Hardware, software, and operations are the three main 
areas of the RAS pillar. 

A reliable deployment will continue to deliver designed functionality under 
normal and adverse operating conditions. The reliability of the RAS pillar 

includes but is not limited to the following properties:  

 Ensuring reliable operation of the underlying hardware upon which the 
software is operating, enabling reliable and resilient software and a 

reliable fog network, which is generally measured in uptime. 
 Safeguarding the availability and integrity of data and compute on 

edge gateways using enhanced hardware, software, and network 

designs. 
 Autonomous predictive and adaptive self-managing capabilities when 

required by the health of the system to initiate self-healing routines for 
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hardware and software and upgrade new firmware/application and 

security patches. 
 Increasing customer satisfaction by simplifying support and device 

self-optimization and healing. 
 Initiating requests for preventative maintenance, including new 

hardware and software patches, network re-routing, etc. 
 Testing and validation of system components, including device drivers 

and diagnostic tools under a variety of environmental conditions. 
 Providing alarms, reports, logs, etc. 

 Validation of system platforms and architectures through 
interoperability certification test suites.  

Availability ensures continuous management and orchestration, which is 
usually measured in uptime. The availability of the RAS pillar includes but 

not limited by the following properties:  
 Secure access at all levels of a fog hierarchy for orchestration, 

manageability, and control, which includes upgradeability, diagnostics 
and secure firmware modification. 

 Fault isolation, fault syndrome detection, and machine learning to help 
improve Mean Time To Repair (MTTR) of a failed system to achieve 

higher availability. 
 Concept of cloud based back-end support with availability of interfaces 

throughout the system. 
o Secure remote access from a plurality of devices (not just a 

single console). 
o Redundant/duplicate device (peer-to-peer) IoT platform. 

o Mesh access capabilities of end-point sensor/peering. 

o Remote boot capabilities of the platform. 
 Modification and control from the lowest level firmware 

(BIOS) through to the highest software in the hierarchy 
(cloud). 

o Support for redundant configurations for persistent productivity. 

Servicing a fog deployment ensures correct operation. Serviceability of the 
RAS pillar includes but is not limited by the following properties:  

 Highly automated installation, upgrade, and repair to efficiently deploy 
fog computing at scale. 

 Hardware or software can either autonomously heal or be serviced by 
the various manufacturers.  

 Ease of use to accommodate maintenance. 
 Serviceability of the system:  

o Hardware, software, applications, networking, and data  
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o Ease of access/swap-out of the hardware (component 

interoperability). 
o Ease of secure upgradeability of software, BIOS, and applications 

locally or remotely and in real time. 
o Replication of system configuration over cloud on replaced/swap-

out systems. 
 Support for redundant configurations for persistent productivity.  

RAS is especially important for OpenFog RA deployments in harsh 
environmental conditions and remote locations. This is why aspects from 
RAS are found throughout the architecture. 

 Agility Pillar 

The agility pillar addresses business operational decisions for an OpenFog RA 

deployment. It is not possible for humans alone to analyze the data 
generated at the scale predicted by IoT as the basis for rapid, sound 

business and operational decisions. The agility pillar focuses on transforming 
this volume of data into actionable insights. Agility also deals with the highly 

dynamic nature of fog deployments and the need to respond quickly to 
change. 

Data generation by sensors and systems in an OpenFog RA deployment are 
turbulent, bursty, and are often created in huge volumes. Most importantly, 
data may not have context, which is created only when the data is collated, 

aggregated, and analyzed. The analysis of data can be executed at the cloud 

level, but this subjects the data to increasing levels of latency. The ideal 
approach is to make operational decisions as soon as data can be turned into 

a meaningful context. The architecture enables the creation of context close 
to the data generation where it makes the most sense for a given scenario. 

More strategic, system-wide decisions and policy management can be made 
further up the layers in the fog hierarchy. This avoids network dependencies 

we termed as “network taxes” as described in other OpenFog RA pillars. 

OpenFog architectural approaches allow IoT system developers to optimize 
the placement of their applications as decision making components.  

 Hierarchy Pillar 

Computational and system hierarchy is not required for all OpenFog 

architectures but it is still expressed in most deployments. The OpenFog 
architecture is complementary to traditional cloud architectures due in part 

to the OpenFog hierarchy pillar.  
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OpenFog RA computing resources can be seen as a logical hierarchy based 

on the functional requirements of an end-to-end IoT system. Depending on 
the scale and nature of the scenario being addressed, the hierarchy may be 

a network of smart and connected partitioned systems arranged in physical 
or logical layers, or it may collapse into a single physical system (scalability 

pillar).  

Using building automation from smart cities as an example, a company that 
manages a single office complex may have the entire fog deployment 

located locally. A large commercial property management company may 
have distributed fog deployments at local and regional levels feeding 

information to centralized systems and services. Each fog node is 

autonomous (autonomy pillar) to ensure uninterrupted operations of the 
facility it manages.  

The figure below shows a logical view of the IoT system from a 
computational perspective. Each layer in the hierarchy addresses a specific 
concern of the IoT system.  

 

 
Figure 6 Layered Architecture View of an IoT System 

Devices in the hierarchy: Sensors and actuator devices are the physical 

things and produce telemetry data to be consumed by the monitoring and 
control layer. This layer analyzes the telemetry and generates actuation 

commands if the process being monitored deviates from the desired state. 
Note that the term “process” is used in an abstract sense that it is 

represented by a set of measured parameters that depend on a set of 
actuator settings. Depending on the domain problem, some systems may 

not have any actuators. Similarly, for scenarios like mobile network 
acceleration, the core function is to accelerate content delivery and not 
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monitoring and control. On the other hand, systems like building operations 

may have actuators to change the HVAC and lighting based on occupancy.  

Monitoring and control in the hierarchy: Sensors and actuators are 
connected to microcontrollers that are programmed to monitor and control 

the state of the processes. A process state is represented by a set of 
parameters measured by the sensors and modified by the actuators. The 

main responsibility of this layer is to execute control logic through stateful 
inspection of the sensor telemetry. This involves computing alarms and 

generating events, which may trigger workflows through machine-to-
machine or human intervention.  

Operational support in the hierarchy: The operational support layer is 
responsible for analyzing streaming telemetry and storing operationally 

oriented analytics. The analytics may be presented through interfaces like 
control room dashboards and mobile applications. The scope of the analytics 

at this layer is narrow; it focuses on the operational aspects of the physical 
environment for which the system is responsible. This layer combines drill 

down historical analytics with streaming analytics for a composite picture of 
real-time operations with some short-term history. The agility pillar is seen 

in the hierarchy as the implementation of complex event processing on the 
streaming telemetry data.  

Surrogacy in the hierarchy: The computation of a complex operation in 
the fog nodes may be delegated to the hierarchical nodes to leverage 

adjacent resources. Consider virtual reality tasks associated with a wearable 
such as smart glasses. Some of the information retrieval and computation 

tasks may be carried out on the glasses, while an associated element in the 
hierarchy (e.g., a smartphone) may handle its storage and connectivity 

requirements. This hierarchical architecture may leverage all of these 
devices at the same time, with an intelligent division of labor across them. 

Business support in the hierarchy: The primary responsibility of this 
layer is to store and analyze the entire history of the IoT operations that 

span multiple systems. This is the system of record for IoT operations as 
governed by the compliance and record retention policies. Petabyte scale 

analytics will help in mining insights, business planning, comparing the 
operational efficiency of processes, operational optimization through training 

machine learning models, etc. Additionally, metadata and reference data 
management, business rule management, and the operational health of 

lower layers are the other aspects of this layer. These are also viewed in the 
agility pillar. 
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4.8.1 Hierarchical Fog Deployment Models 

The figures below show a subset of the combination of fog and cloud 
deployed to address various domain scenarios as framed by the layered view 

of IoT systems. Each fog element may represent a hierarchy of fog clusters 
fulfilling the same functional responsibilities. Depending on the scenario, 

multiple fog and cloud elements may collapse into a single physical 
deployment. Each fog element may also represent a mesh of peer fog nodes 

in use cases like connected cars, electrical vehicle charging, and closed loop 
traffic systems. In these use cases, fog nodes may securely discover and 

communicate with each other for exchanging context-specific intelligence.  

 
Figure 7 IoT System Deployment Models 

 
Figure 1 shows a fog deployment hierarchy that is independent of the cloud. 

This model may be applicable for use cases where cloud can’t be used for 
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reasons such as low event to action time window, regulatory compliance, 

military grade security and privacy, and unavailability of a central cloud in a 
particular geography. Examples include armed forces combat systems, drone 

operations, some healthcare systems, hospitals, and ATM banking systems.  
 

Figure 2 shows the cloud used for information processing related to decision 
making that may have event-to-action time window ranging from hours to 

days to months. Operation-centric information processing is done by fog 
deployments located close to the infrastructure/process being managed. Use 

cases include commercial building management, commercial solar panel 
monitoring, and retail.  

 
Figure 3 shows the local fog infrastructure used for time-sensitive 

computation, while the cloud is used for the balance of operational and 
business-related information processing. Use cases include commercial UPS 

device monitoring, mobile network acceleration, and content delivery 

networks (CDNs) for Internet acceleration.  
 

Figure 4 supports use cases like agriculture, connected cars, and remote 
weather stations. These use cases leverage the cloud for the entire stack 

due to the constrained environments in which the deployment of fog 
infrastructure may not be feasible or economical. Fog nodes at the device 

layer may get some of the monitoring and control function for safety related 
control. The enterprise systems integrate with cloud for business operations.  

 
Note that the functional boundaries shown in Figures 1-3 are fluid and can 

be physically deployed in multitude of combinations based on the 
architecture of the domain-specific solutions. In real world deployments as 

we discussed earlier, there may be many combinations of physical 
deployments that involve multi-tenants, fog, and cloud deployments owned 

by multiple entities. The following diagram illustrates some those models:  
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Figure 8 Fog Hierarchy Example 

 
Figure 9 Fog Hierarchical Deployment Model 
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Many of the usages will occur as represented in Figures 2 and 3. The three-

layer fog hierarchies shown here are for illustrative purposes only. Real-
world fog deployments may have more or fewer levels. Different vertical 

application use cases may use a fog hierarchy differently. For example, in a 
smart city, there may be fog nodes in a region, neighborhood, street corner, 

and building level. In a smart factory, the hierarchy may be divided by 
assembly lines, manufacturing cells, and machines. 
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5 Reference Architecture Overview 

 

The OpenFog reference architecture is based on the eight pillars described in 
the previous chapter. We use the ISO/IEC/IEEE 42010:2011 international 
standard as the guideline for describing architecture to stakeholders. The 

standard enables a common vocabulary across IoT to help support cross-
organizational technical collaboration. These are some of the shared 

vocabulary terms used in the OpenFog RA: 

 OpenFog Architecture Description: is an abstract representation of 

an instance of a fog node. It is a composite of multiple views we used 
to address stakeholders in the fog computing value chain. 

 Viewpoint: A viewpoint is a way of looking at a system. These 
included but are not limited to Functional and Deployment viewpoints.  

 View: A view is a representation of one or more structural aspects of 
the architecture. In the current revision of the OpenFog RA, the 

structural aspects are the Software view, System view, and Node view. 
 Perspective: A perspective is a cross-cutting concern of the 

architecture.  

 Functional Viewpoint 

The functional viewpoint of the architecture shows how we apply the 
OpenFog architectural elements and views to address the various concerns 
of the stakeholders to satisfy a given scenario. Each scenario chosen will 

focus on a different aspects and market opportunities for fog computing. We 

fully expect that the architectural description, views, and perspective may 
change over time. This change and refinement should be driven from 

testbeds and application of the OpenFog RA to multiple different markets we 
see as important to fog computing.  

The first end-to-end scenario we will address is the visual security scenario. 
Our intent will be to define how that scenario works, and then work through 
various testbeds associated with those aspects to validate or modify the 

architecture. 
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 Deployment Viewpoint 

5.2.1 OpenFog Deployment Types 

How fog software and fog systems are deployed to address a given scenario 
is also very important. There are many deployment types ranging from 

embedded to large clustered systems that are fully interconnected. The 
deployment type(s) chosen are scenario specific, but key aspects of the 

architecture remain visible regardless of deployment type. However, some 
may grow or shrink in importance.  

5.2.2 N-Tier Fog Deployment 

In most fog deployments, there are usually several tiers (N-tiers) of nodes. 
For this example, we will use a simple food processing plant to help solidify 

the logical tiers. There is a conveyor belt on which food is processed before 
moving on to the next level of packaging and shipment. 

 
Figure 10 Multi-Tier Deployment 

 Nodes at the edge are typically focused on sensor data 

acquisition/collection, data normalization, and command/control of 
sensors and actuators.  

o Using our example, the fog nodes nearest the physical 
technology edge (at the conveyor belt) will need to operate at 
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millisecond and sub-millisecond granularity from sensing to 

actuation to avoid product contamination and to ensure safety of 
operation. 

 Nodes in the next higher tier are focused on data filtering, 
compression, and transformation. They may also provide some edge 

analytics required for critical real time or near real time processing. As 
we move away from the true network edge, we see higher level 

machine and system learning (analytics) capabilities.  
o Using our previous example, we can easily see that this tier 

needs to operate on a slightly higher level. It should be ensuring 
that the conveyor belt and others around it are operating more 

efficiently. This may still be in the latency of milliseconds. The 
key aspect of OpenFog RA to enable migration of applications, 

and functionality between the lowest tiers and the middle tiers 
as required by the scenario. 

 Nodes at the higher tiers or nearest the backend cloud are typically 

focused on aggregating data and turning the data into knowledge. It’s 
important to note that the farther from the true edge, the greater the 

insights that can be realized.  

Note: In some deployment models, some degree of analytics may be located 
in nodes at the edge of the network (e.g. video analytics on surveillance 

cameras). This is because the network pipes may not be large enough to 
cost effectively carry the raw sensor data to higher layer fog nodes for 

processing. In reality as computational capabilities grow, the analytics 
functions at the lower tiers will grow. This will enable the overall growth of 

intelligence of fog deployments over time.  

 
Machine Learning is in the forefront of research today that requires 

computation for both training models, and inference or scoring those models 
for close to real time response at the edge. We could use machine learning 

to optimize operations at a train station in a smart city. In the train station, 
we could monitor and sense occupancy, movement, and overall system 

usage and over time adapt our infrastructure to determine how to most 
efficiently use it.  

 
Using the smart city as a continued example, by including more buildings 

and having them talk to each other and using another tier above them to 
gain additional insights, city blocks can operate more efficiently. Learnings 

from blocks of buildings provide insights on how to make the overall city 
more efficient and so on and so forth. The key message is that as you move 

farther away from the true network edge, you can gain operational insights 

and increase the overall system intelligence. Additionally, migration of data 
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between these fog nodes in both the horizontal and vertical increases the 

system performance and operational capabilities.  

5.2.2.1 How Use Cases Determine the Number of Tiers 

Fog deployments will come large-scale and small, based upon the given 

scenario being addressed. The number of tiers in a fog deployment will be 
dictated by the scenario requirements, including: 

 Amount and type of work required by each tier 
 Number of sensors 
 Capabilities of the nodes at each tier 

 Latency between nodes and latency between sensors and actuation 
 Reliability/availability of nodes 

In general, each level of the N-tier environment would be sifting and 
extracting meaningful data to create more intelligence at each level. Tiers 

are created in order to deal efficiently with the amount of data that needs to 
be processed and provide better operational and system intelligence. At the 

highest level this can be represented by the figure below.  

 
Figure 11 Intelligence from data 

Important aspects we will address overtime is that the software running at 

every level and each node should be enabled to migrate across nodes, span 
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physical instantiations of hardware nodes, and change over time to address 

the needs of a given scenario. For this to be securely and safely achieved we 
need to address not only the software, but also the hardware on which that 

software is executed. 
 

5.2.2.2 Fog Node Uniformity 

The architectural elements of a node will vary based on its role and position 
within an N-tier fog deployment. As described previously, nodes at the edge 
may be architected with less processing, communications, and storage than 

nodes at higher levels. However, I/O accelerators required to facilitate 
sensor data intake at the edge may be much larger in aggregate than I/O 

accelerators designed for higher level nodes. 

 

Fog nodes may be linked to form a mesh to provide load balancing, 
resilience, fault tolerance, data sharing, and minimization of cloud 

communication. Architecturally, this requires that fog nodes have the ability 
to communicate laterally (peer to peer or east to west) as well as up and 

down (north to south) within the fog hierarchy. The node must also be able 
to discover, trust, and utilize the services of another node in order to sustain 

RAS. Using our building and city example as before this is represented by 
the following figure. 
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Figure 12 Fog Node East/West Communication 

Each building is connected, neighborhoods, and regions are connected to 
provide an infrastructure that may be optimized for service delivery. 

 

 OpenFog Architecture Description 

As we previously described, fog computing is critical because it enables low 
latency, reliable operation, and removes the requirement for persistent cloud 

connectivity to address many of today’s emerging scenarios. We also 
described how fog nodes can be connected partially or fully to enhance the 

overall system intelligence and operation, and how system wide intelligence 
grows the farther away from raw data processing.  

The next step is to describe the requirements for each stakeholder in the fog 
computing continuum. This includes the silicon manufacturer, system 
manufacturer, system integrator, software manufacturer, and application 

developer. We also believe that this architecture will help align the various 
disparate edge based computing but potentially divergent work under a 

singular vernacular so that we can have a common baseline and work 

towards fulfilling our desire of a multi-vendor interoperable fog computing 
ecosystem. The OpenFog RA description is a composite representation of 

these various stakeholder concerns which we call views. We have primarily 
identified these stakeholders and their associated views because they are 

required to facilitate any successful fog based deployment. Before going into 
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the lower level details of the view we believe it is important to first look at 

the composite architecture description. 

 

 
Figure 13 Architecture Description with Perspectives 

The abstract architecture includes perspectives, shown in grey vertical bars 

on the sides of the architectural description. The perspectives include: 

 Performance: Low latency is one of the driving reasons to adopt fog 
architectures. There are multiple requirements and design 
considerations across multiple stakeholders to ensure this is satisfied. 

This includes time critical computing, time sensitive networking, 
network time protocols, etc. It is a cross cutting concern because it 

has system and deployment scenario impacts. 

 Security: End-to-end security is critical to the success of all fog 
computing deployment scenarios. If the underlying silicon is secure, 

but the upper layer software has security issues (and vice versa) the 
solution is not secure. Data integrity is a special aspect of security for 

devices that currently lack adequate security. This includes intentional 
and unintentional corruption. 

 Manageability: Managing all aspects of fog deployments, which 
include RAS, DevOps, etc., is a critical aspect across all layers of a fog 

computing hierarchy. 
 Data Analytics and Control: The ability for fog nodes to be 

autonomous requires localized data analytics coupled with control. The 
actuation/control needs to occur at the correct tier or location in the 

hierarchy as dictated by the given scenario. It is not always at the 
physical edge, but may be at a higher tier. 
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 IT Business and Cross Fog Applications: In a multi-vendor 

ecosystem applications need the ability to migrate and properly 
operate at any level of a fog deployment’s hierarchy. Applications 

should also have the ability to span all levels of a deployment to 
maximize their value.  

 
As previously discussed, the OpenFog RA description is a composite of 

perspectives and multiple stakeholder views used to satisfy a given fog 
computing deployment or scenario. The three views that we have identified 

include Software, System, and Node.  
 

 Software view: is represented in the top three layers shown in the 
architecture description, and include Application Services, Application 

Support, and Node Management (IB) and Software Backplane.  
 

 System view: is represented in the middle layers shown in the 

architecture description, which include Hardware Virtualization down 
through the Hardware Platform Infrastructure.  

 
 Node view: is represented in the bottom two layers shown in Figure 

19, which includes the Protocol Abstraction Layer and Sensors, 
Actuators, and Control. 

 
Note: The fog platform coupled with the fog software creates the complete 

fog node. One or more fog nodes comprises a solution in a given market 
segment or scenario.  

However, high-level architectures, including the OpenFog RA, are intended 
to help engineers, architects, and business leaders understand their specific 

requirements and how fog nodes can be applied to a given scenario. The 
goal of the OpenFog Consortium is to increase the number of market 

segments (use cases) for fog computing, and its business value. OpenFog 
will create test-beds to adapt the high-level architecture to these market 

segments. These testbeds will also provide opportunities for FogFests (plug 
fests) to help drive component level interoperability and accelerate time to 

market. 
 

The following sections go into more detail about the structural aspects 
(views) and perspectives of the RA. 
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 Perspectives (Cross Cutting Concerns) 

Cross-cutting perspectives are employed throughout fog implementations. 
“Cross cutting” refers to capabilities that cut across architectural layers. The 
figure below shows the five cross-cutting perspectives of the fog computing 

architecture.  

 
Figure 14 OpenFog Architecture Perspectives 

5.4.1 Performance and Scale Perspective 

When fog computing brings some of the intelligence of cloud-based 

applications and analytics to the edge of the network (or as close as possible 
to the data source), the performance of the overall system (however that 

system is defined) will improve. Fog computing will also enable the system 
to better adapt to changing traffic patterns. This means that performance 

improvements happen faster and are also more relevant and specific to 
business case requirements. 

 
Another requirement for performance is that improvements in one area must 

not interrupt or slow other processes requiring a guaranteed quality of 
service or performance. When measuring a fog node’s performance, we 

usually look at throughput and latency. Both depend on the ability to 

prioritize traffic types or classes throughout the whole system.  
 

In the RA, virtualization and containerization technologies are both used in 
fog computing to help with scalability and isolation. These newer 

technologies further support the ability to assign higher priority or more 
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resources to specific applications or services dynamically. For example, high 

priority network traffic can be marked and classified by the network 
interface, the computational elements, and the appropriate higher-layer 

applications.  
 

Network bandwidth and local storage can also be given higher priority on a 
dynamic basis. For example, if the fog node is used for traffic inspection, 

CPU/memory is assigned higher priority than storage and preservation of 
history. 

5.4.2 Security Perspective 

In a fog computing infrastructure, end-to-end security must cover 
everything between the cloud and the things on the edge of the network. In 

the architecture, security starts with the individual fog node hardware. If the 
node is not designed with the appropriate security to ensure that it is a 

trusted element, it isn’t possible to build a trustworthy end-to-end fog 
computing infrastructure. Once trusted fog nodes have been deployed, a 

secure fog network can be layered on top of the node infrastructure, 

providing the basis for secure node-to-node, node-to-thing, and 
node-to-cloud communication. 

5.4.2.1 Trusted and Trustworthiness 

Trustworthy fog systems depend on using trusted elements that are 
responsible for maintaining the security policies specified for a given device. 

If one or more trusted components (hardware, firmware, or software) in a 
node are compromised, then the node—and, by extension, the system—is no 

longer trustworthy. The RA also determines trustworthy attributes including 
behavior by inspection of historical behavior at various levels of the 

hierarchy to determine if the system and its components are acting in a 
trustworthy manner. 

Policies specify who or what can access which resource under what 
circumstances. Security mechanisms then implement the policy. Some 

policies may be embedded in the node’s hardware and software. Other 
policies may be pushed from the fog management system to the node; they 

can be added, changed, or deleted by an authorized management or 
orchestrator administrator. Each layer in a fog deployment requires security 

as represented in the figure below. 
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Figure 15 OpenFog Security Layers 

5.4.2.2 Threat Models and Threat-Based Design 

Fog deployments require security protection mechanisms implemented in a 

particular design dependent on the threat model and the value of the asset 
being protected for that fog node. In the architecture, we assume that 

attackers are actively looking to compromise the assets, looking for the most 
vulnerable entry point. The objective is to provide sufficient security for the 

threat model and upgrade the security, as needed, over time. Error! R
eference source not found. lists some (non-exhaustive) examples of 

threats and attacks towards fog nodes. When designing for threats in a fog 
environment you need to understand the various views of each and the 

overall deployment model that is being addressed. In many fog 
deployments, you cannot assume physical possession is out of scope and 

that further adds requirements onto fog platforms. 

Different use case models, even within a single use case vertical, may 
require different types and levels of security. Many different types of assets 
need to be protected against different levels of threats specific to their 

intended use and location. Assets may include:  

 Information Technology infrastructure 

 Critical infrastructure  
 Intellectual property 

 Financial data 
 Service availability 

 Productivity 
 Sensitive information 

 Personal information 
 Reputation 
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Threat: An action (attack) that can damage an asset or cause a security 

breach.  

Threat model: Specifies the types of threats that the system defends 
against, as well as threats that are not considered. A threat model should 

clearly specify what assumptions are being made about the system, its 
users, and potential attackers. A threat model need not describe the details 

of the attacks that it protects against. It should specify whether attacks on 
the operational system in the field are the only ones considered, or considers 

attacks during the development by an insider. Insider attacks are typically 
much harder to protect against, because the designer can build in a back 

door that can be exploited later. 

 
Threat  
Categories 

Confidentiality  
Violation 

Integrity  
Violation 

Authentication  
Violation 

Availability  
Violation 

Privacy  
Violation 

 

Leaking 
information 
through 
overt/covert 
channels 

Modifying 
data/code 
without 
proper 
authorization 

Masquerading 
one entity as 
another entity 

Rendering 
resources 
unreachable 
/unavailable 

Leaking 
sensitive 
information 
of an entity 
(incl. identity) 

Insider 
Attacks 

Data Leaks 
Data 

Alteration  
Identity/Password

/ Key Leaks 
Equipment 
Sabotage 

 Data/Identity  
Leaks 

Hardware 
Attacks 

Hardware 
Trojans, 

Side Channel 
Attacks 

Hardware 
Trojans  

Hardware Trojans  

Radio 
Jamming, 

Bandwidth 
Exhaustion 

 Hardware 
Trojans, 

Side Channel 
Attacks 

Software 
Attacks 

Malware Malware Malware 
DoS/DDoS, 
Resource 
Depletion 

Malware, 
Social 

Network 
Analyses 

Network 
Based 
Attacks 

Eavesdropping 
Message / 

Transaction 
Replay 

Spoofing, 
Man-in-Middle 

Attacks 

DoS/DDoS, 
Subnet 

Flooding 

Traffic Pattern 
Analyses  

Figure 16 Example Threats and Attacks 

5.4.2.3 Confidentiality, Integrity, and Availability  

There are three cornerstones of the fog security perspective: 

Confidentiality: The prevention of the disclosure of secret or sensitive 
information to unauthorized entities.  

 

 

Intents 

Attack  
Venues 
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Integrity: The prevention of unauthorized modification of protected data or 

code without detection.  

Availability: The ability of a system to continue to provide service to 
authorized entities at the agreed upon service level as needed. Availability, 

in the security sense, has to consider external attacks, such as Denial of 
Service, rather than just hardware and software failures and faults. 

5.4.2.4 Access Control  

Restricting access to resources (objects) to only those allowed to access that 
information is key to building a secure system. Access Control encompasses 

Authentication, Authorization, and Accounting (AAA).  

 Authentication answers the question “Who are you?” Authentication 

is used between humans and machines and between machines and 
machines. 

 Authorization answers the question “What are you allowed to do?” 
 Accounting refers to the record keeping and tracking mechanisms 

implemented in the system. This includes tracking and logging access 
to system resources. 

 Physical access security to insure only authorized people are allowed 
to touch fog hardware is another aspect of this security mechanism. 

5.4.2.5 Privacy 

Privacy is the right to decide how one’s information is used. (Confidentiality 
is the obligation to protect secret or sensitive information.) Privacy is a 

property of data. Fog systems must allow users to specify the privacy 

attributes of the data that they own on the system. In a multi-tenant 
system, this may involve specifying both privacy and sharing rights among 

tenants. If fog systems capture data for analysis at the edge, the privacy of 
that data must also be accounted for in the deployment. 

5.4.2.6 Identity and Identity Protection 

Public-key ciphers can be used for establishing a longer-term cyber identity, 
e.g., for authentication. In public-key cryptography, keys come in matched 

pairs (public key and private key) for each user, entity, computer, or 
subject. The private key must be accessible only to the subject and 

represents the subject’s digital identity in cyberspace.  

Hashes can be used to verify the integrity of code modules by taking the 

hash of the good known code module and using that to identify the module 
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(like a unique global name). The same code module infected with malware 

would have a different identity or hash value. Two identical code modules or 
data, but with different filenames, would have the same hash value, which 

means the same identity.  

The private key of someone’s key pair is like their digital identity. For 
example, an operation executed with Alice’s private key can authenticate the 

person as Alice. Private keys must be kept confidential in order to protect 
someone’s digital identity. 

5.4.3 Manageability Perspective 

Many fog computing deployments involve machine vision, and associated 

human-like functions. As such, they have the ability to see, respond, 
remember, move, and make autonomous decisions in order to participate in 

other fog services. This range of actions requires a higher level of 
manageability than a traditional static model. In addition, fog nodes may be 

deployed in a wide range of locations: remote, fixed and non-fixed, and 
environmentally harsh conditions.  

Fog computing is driving changes to manageability service compared with in 

traditional IT and OT management systems.  

5.4.3.1 Manageability Interfaces 

Manageability interfaces deployed for fog computing should support In Band 

(IB) or Out of Band (OOB) management interfaces or both. There are pros 
and cons for using IB or OOB manageability, but the best choice is generally 

dependent on the given deployment scenario. However, both may be used 

as we move to autonomous levels of manageability.  
 IB manageability: This refers to the manageability interfaces that 

are visible to the software and firmware running on a given system. IB 
manageability interfaces may communicate with a system service 

processor (SSP) or a baseboard management controller (BMC), if they 
are present on a given hardware node. However, this is not required. 

In some scenarios, IB manageability may be run on a separate OS 
thread or periodic service. Many systems use “heartbeats” to manage 

the health of a given system. If the IB management thread does not 
send the heartbeat, a higher-level management entity may restart or 

alert service systems to address the issue.  
 OOB manageability: This refers to manageability interfaces to a 

manageability subsystem that is not running on the host operating 
system. These are generally discrete manageability systems that can 

survive and manage systems in all power states. Specifically, when a 

fog platform is powered off, and software is not executing on the host 
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platform, an OOB manageability interface can still be used 

communicate with the platform and perform things like inventory 
control, system health, power it one, etc. Examples include BMCs as 

defined by the IPMI specification. OOB management has potential 
security advantages, especially for business-critical IoT applications. 

 

5.4.3.2 Management Lifecycle 

Even the smallest fog node has a management lifecycle. The figure below 
shows the main components of a management lifecycle from a 

manageability perspective.  

In all systems, there are one or more management agents. These may be 

implemented as discrete systems or software services. The purpose of the 
management agent is to ensure that each element of a fog node successfully 

goes through the management lifecycle. Automation is important during all 
phases of the lifecycle, because human intervention is impractical for large 

fog networks. 

 

 
Figure 17 Management Lifecycle 

 

Commission: This is the earliest phase of a fog platforms lifecycle. When a 
managed entity is commissioned, certain actions are required prior to 

provisioning. These include identification, certificates, calibration of time, 
etc. In addition, at this state the managed entity must: 

 Include security that can be attested to and trusted in future phases of 
the lifecycle. 

 Include RAS (reliability, availability, and serviceability).  
 Be agile in data collection and monitoring. 

 Open in order to allow control and provide visibility into its resources. 

Provision: When a managed entity begins its early life in a fog node it must 
be enrolled. This includes discovery, identifications, advertisement of 

features and capabilities, trust, and deployment of features. The managed 
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entity must also be scalable upon provisioning. It must have the ability to 

support a multitude of hierarchies.  
Operate: When a fog node is in normal operation. Manageability 

requirements cover all aspects of reliability, availability, and serviceability.  
Recovery: When a fog node is operating out of expected norms, it must be 

autonomous in its ability to recover. It should attempt to self-heal and 
perform recovery operations. Other fog nodes may also assist with the 

recovery action, which is why the architecture defines both OOB and IB 
manageability interfaces. 

De-Commission: Since many aspects of fog nodes may have Personally 
Identifiable Information (PII), the architecture specifies an ability for 

cleansing all aspects of hardware. This includes the ability to decommission 
fog node instances and re-use them for another deployment. It includes 

ways to securely wipe out all of the Non-Volatile (NV) storage so that future 
applications may not access the previous tenant’s data. 

5.4.3.3 Management Layer 

As shown in management lifecycle, the fog management layer has many 

responsibilities, including automated discovery, registration, and 
provisioning of endpoint devices. Discovery services provide an efficient 

method for finding, identifying, onboarding, and managing components in 
the fog infrastructure. Both IB and OOB discovery methods are used. IB 

services are usually discovered using operating system or software agents. 

OOB discovery is usually performed through wireless, SMBus, or I2C 
interfaces which are easier to maintain during low power system states. The 

purpose of discovery is to gain a full understanding of the endpoint device’s 
resources, establish a health baseline, and ensure correct operational state 

until the element is decommissioned. 
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Figure 18 Management Layer 

 

The most commonly used manageability aspects of a fog node are system 

software and firmware update and remote alerts of abnormal system 
operation. As fog-based systems often operate in harsh or remote 

environmental conditions, it is usually a requirement to provide “over the 
air” (OTA) firmware and software updates. The manageability layer is 

responsible for these updates. 

5.4.4 Data, Analytics, and Control 

The traditional way of delivering analytics is no longer efficient or, in some 
cases, even possible using traditional sensor to cloud models. This is due to 

the large volume of data that must be captured, stored, and transported to 
the data center or cloud for additional processing and analysis by large-scale 

business applications. As we look deeper into business and technical 
processes, more granular data elements will be needed to create actionable 

business knowledge from information. This data journey is an evolving vision 
for most companies and institutions. Some are interested in taking the full 

journey. Some just want to understand the current state of their operations 
and want Descriptive Analytics (the analysis of what’s happening or what 

happened). Others are interested in Diagnostic Analytics, which entails root-
cause analysis. Predictive Analytics uses all the knowledge from the previous 
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analysis and combines it with other knowledge about processes and tools to 

understand what will happen. Eventually companies may be interested in 
Prescriptive Analytics, which enables processes to optimize themselves. 

The more that companies want to understand about their operations, the 
more data, compute, and data resources they will need. As we have shown 

multiple times, with fog computing, we have the tools to capture, store, 
analyze, and transport only relevant data. This is done by having the 

intelligence of upper layer data-center or cloud applications embedded as 
close as possible to the data-source. This means that with integration 

between the data-source and the Business Intelligence analytics 
applications, the “network” or the “edge” will capture the data from the 

source, process it for local purpose-specific analytics, deliver an action back 
to the process while at the same time sending same or other datasets to the 

Data Center or Cloud for further “business or operations-specific” processing. 
The hierarchical nature of fog helps this, allowing different components of 

the analytics algorithms to operate at different fog layers. We see this as 

cross cutting concern because it has to happen at the right layer as dictated 
by the scenario being addressed. 

 
Figure 19 Business Intelligence 

 

The figure above shows the integration of and open data exchange across all 

elements of the business process. This integration and exchange is 
necessary for the success and accuracy of business intelligence analysis. The 

OpenFog Consortium is working on developing (and evolving) various 
solutions around security and identity to facilitate this type of 

communication within an enterprise and between the enterprise and its 

partners and suppliers. Business intelligence will depend on well-defined 
flows, secure boundaries, facilitating data capture and exchange among the 

various data processing elements, and the data science capable of making 
sense of it all. 
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5.4.5 IT Business and Cross-fog Applications 

Fog applications and services should have the flexibility to span and 
interoperate with various levels in a fog hierarchy. This is a foundational 

aspect of fog computing that enables a multi-vendor ecosystem. In addition, 
the data that is collected or generated by one fog node should be shareable 

with other nodes in the hierarchy. The figure below shows a cross-fog 
application spanning east to west nodes (it would also be able to span north 

to south). 

 
Figure 20 Cross Fog Application 

Cross-fog applications require that we have an understanding and adoption 

of smart objects and associated data models. These are critical to those 
applications for interoperability and additional value creation. 

 Node View 

As previously described, the OpenFog RA description is a composite of 

multiple stakeholder views. The node view is the lowest level view we 
currently utilize in the architectural description. The stakeholders involved in 

formulating the viewpoint (and subsequently this view) are the system on a 



    

57       
OPFRA001.020817                    © OpenFog Consortium. All rights reserved.  

 

chip designers, silicon manufacturers, firmware architects, and system 

architects.  

 
Figure 21 Node View 

Before bringing a node into a fog computing network, the following aspects 

should be addressed: 

Node Security: As described previously, node security is essential to the 
overall security of the system. This includes protection for interfaces, 

compute etc. In many cases a node will act as a gateway for legacy sensors 
and actuators to higher-level fog functions and therefore can act as a 

security gateway. It is important to note that Node security is shown as both 
a vertical perspective as well as a horizontal requirement for this view. This 

is an important concept as security must be considered at all levels from 
silicon to software. 

Node management: A node should support the management interfaces, 
provided by the node being managed. Management interfaces enable higher-

level system management agents to see and control the lowest level node 
silicon. The same management protocol can be used across many different 

physical interfaces.  

Network: Every fog node must be able to communicate through the 
network. Since many fog applications are time sensitive and time aware, 

some fog computing networks may need to support Time Sensitive 
Networking (TSN). 

Accelerators: Many fog applications utilize accelerators to satisfy both 
latency and power constraints as it relates to a given scenario.  

Compute: A node should have general purpose compute capabilities. It is 
also important that standard software (e.g., Commercial off the Shelf or 

open source) be able to run on this node. This enables a higher level of 
interoperability between fog nodes. 

Storage: An autonomous node must be able to learn. Before any learning is 
possible, it must have the ability to store data. Storage devices attached or 

embedded to this node need to meet the required performance, reliability, 
and data integrity requirements of the system and scenario. In addition, 
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storage devices should also provide information and early warnings about 

the health of the media, support self-healing properties, and support ID-
based performance allocation. Some kind of local, standalone storage will be 

required for local context data, logging, code images, and to service 
applications that run on the node. There will often be more than one kind of 

storage required – e.g., local hard disk, SSD, and secure storage for keys 
and other secret material. 

Sensors, Actuators, and Control: These hardware or software-based 
devices are considered the lowest level elements in IoT. There could be 
several hundred or more of these associated with a single fog node. Some of 

these are dumb devices without any significant processing capability, while 

others may have some basic fog functions. These elements generally have 
some amount of connectivity, and include wired or wireless protocols, such 

as I2C, GPIO, SPI, BTLE, ZigBee, USB, and Ethernet, etc. 
Protocol Abstraction Layer: Many of the sensors and actuators on the 

market today are not capable of interfacing directly with a fog node. The 
protocol abstraction layer makes it logically possible to bring these elements 

under the supervision of a fog node so that their data can be utilized for 
analytics and higher level system and software functions. 

 
Abstraction is also key to multi-vendor interoperability for both IoT things 

and fog nodes. Well-known inter-element interfaces supply a layer of 
abstraction. They enable vendors to share meta-data of fog architectural 

elements they support, which in turn fosters multi-vendor data 
interoperability and service composability. When meta-data is exposed, it 

also may be used for cross-layer optimizations, for example to optimally 

route data between fog nodes using information-centric networks (ICN) or to 
create dynamic fog topologies as with software-defined networks (SDN). 

 
Future versions of the OpenFog RA will describe “Minimum Viable 

Interfaces”, which will include many more details about protocols and 
abstraction layers. Following subsections contain more details of the aspects 

mentioned above, except those of the sensors, actuators, controls and their 
internet protocol abstractions. Please refer to the security appendix for 

further discussions on IoT device connectivity and security issues. 

5.5.1 Network 

Fog nodes generally are of most value in scenarios where data needs to be 
collected at the edge and where the data from thousands or even millions of 
devices is analyzed and acted upon in micro and milliseconds. In these 

scenarios, various networks facilitate communication within the fog nodes to 
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sensors and up to higher levels in the hierarchy up to and including the 

cloud.  

The network should provide the scalability, availability, and flexibility 
required by the communication pattern or process. The network should also 

provide whatever QoS is required to prioritize critical or latency-sensitive 
data and even guarantee delivery. QoS should be addressed at the lowest 

level, hence Node view, to provide guarantees of QoS. This enables higher 
level views of system providers (System view) and applications (Software 

view) to build upon a stable foundation. 

In the following sections, we will explore various network elements from the 

point-of-view of a fog node’s connectivity and communications requirements.  

Note: Depending upon the deployment scenario, fog nodes will most likely 
exist within a network element, such as an access point, gateway, or router. 

In the architecture, we assume that the network requirements will be the 
same regardless of the placement of the fog node. This clearly will change 

based upon deployment and we will refine this through Testbed and other 

open deployments. 

5.5.1.1 Wired Connectivity 

The network connectivity model for a fog node will depend on the node’s 

purpose and location. For example: 

 A fog node in a factory used to gather and analyze manufacturing 
process data will most likely be connected to upper and lower layers 

using a wired network.  
 A fog node used for gathering and analyzing personnel locations will 

most likely be connected to the sensor using a wireless network.  
 Internal connections within fog nodes will most likely be connected 

using RDMA and other low latency interconnect technologies. 

There are many standards, types, and interfaces for physical connectivity 
that can be utilized to connect a fog node. Physical connectivity is typically 
one or more Ethernet links supporting speeds ranging from 10 Mbps to 100 

Gbps, supported on copper or fiber links to serve various reach 
requirements. We typically see copper connectivity used for links up to 100 

meters in length and supporting speeds ranging from 10 Mbps up to 1 Gbps.  

For connections requiring higher speeds and longer reach, optical fiber 

cables may be used. Optical fiber support different wavelengths and 
transmission modes to support the required distances and capacities. For 
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example, a single mode optical fiber cable (utilizing a single ray of light) 

supports longer distances than a multimode fiber (utilizing multiple rays and 
multiple wavelengths).  

For connecting a fog node to IoT devices or sensors, there are a variety of 
standards and interfaces that are vertical or solution dependent (non-
Ethernet protocols). For example, in an industrial environment, the fog node 

may be required to support a Controller Area Network (CAN) bus or other 
fieldbus standards for communicating with lower layer applications and 

processes.  

For industrial automation uses, guaranteed data delivery is critical. This type 

of networking (usually using Ethernet) is called Time Sensitive Networking 
(TSN) also known as Deterministic Ethernet. TSN uses standards-based time 

synchronization technology (e.g., IEEE 1588) and bandwidth reservation 
(class-based QoS) to prioritize control traffic in a standard Ethernet 

environment.  

If a fog node is required to interface with devices in industrial automation, 

automotive, or robotic environments over Ethernet, support for TSN may be 
needed.  

5.5.1.2 Wireless Connectivity 

Wireless connectivity is an essential part of the Internet of Things in 
particular, and the digital transformation in general. Wireless connectivity 

provides flexibility and enhances efficiency and productivity. Wireless 
interfaces come in a variety of protocols, standards, and mechanisms. The 

quality of connectivity is dependent on many conditions including but not 
limited to the level of flexibility, mobility, reach, availability, power 

constraints, and environmental or geographical conditions. For the various 
IoT applications envisioned for fog computing, wireless connectivity seems to 

be especially beneficial for southbound communication (sensor-to-fog node), 
but will also be used for fog node-to-fog node and fog-to-cloud 

interconnects.  

Wireless support at the fog node will be dependent on a variety of 

parameters, including: 

 Function and/or position in the hierarchy. 
 Mobility is an essential property to support in-vehicle fog nodes and 

many classes of geographically-distributed IoT endpoints. Wireless 
interfaces are the only practical way to reach them. 

 Coverage required to satisfy the deployment requirements. 
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 Data volume (throughput) and velocity (data transfer rates).  

 The form factor required to support various types of antennas, 
modules, or transceivers. 

 If the fog node is expected to receive, process, and relay information 
upstream to other layers in the hierarchy at a high rate, then the 

energy source (including efficiency, delivery, and dissipation 
considerations) becomes a significant design factor. Similarly, if 

transmission and processing rates are lower, then battery, harvested 
energy, and rechargeable sources may be used to fulfill design 

parameters. 
 Wireless support is highly dependent on the environment, i.e., 

interference. For example, deploying wireless technologies in noisy 
environments or around highly reflective metallic surfaces may affect 

the performance required of the fog node. This is also true for 
maritime and other areas where certification of physical infrastructure 

requires that structural integrity of a fog node is not compromised by 

antenna attachments/cable attachments. In these scenarios, secure 
and reliable wireless communication is a requirement. 

 Using a licensed spectrum normally requires a fee for accessing the 
frequency ranges, while, in most cases, using an unlicensed spectrum 

may be low or no cost. 

Wireless connectivity can be grouped into three major areas: Wireless WAN 
(WWAN), Wireless LAN (WLAN), and Wireless Personal Area Networks 

(WPAN).  

Note: It is not uncommon to refer to some of the types of communication 

technologies as Wireless Metropolitan Area Networks (WMAN). For the 
purpose of this discussion, and due to the interchangeable nature of WWAN 

and WMAN use-cases, we use WWAN as a superset of both. Wireless WAN 
(WWAN): WWAN technologies are used when large geographic area 

coverage is required. A variety of protocols and standards exist and we list 
the following standards a fog node may be required to support to 

communicate with the other devices or nodes within the same network: 

 Cellular technologies, including 3G, 4G LTE, and 5G, feature high data 

transfer rates (>1Gbps). They also cost more (as a licensed spectrum) 
and are less power efficient. The majority of cellular communication is 

standardized by the Third Generation Partnership Project (3GPP).  
o Note: 5G promises higher speeds, higher capacity, and much 

lower latency than the current cellular systems. With 5G it may 
be possible to deliver double-digit Gbps speeds (10+ Gbps). 5G 

promises to facilitate higher adoption of IoT solutions and 
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devices. Fog nodes aggregating data from cars, mobile devices, 

and sensors will most likely need to support 5G. 
 Fog nodes may be required to support cellular technologies for 

southbound or northbound traffic or both. Fog nodes may use cellular 
technology to back-haul sensor traffic. Most types of mobile fog nodes 

will use cellular northbound interfaces. Many software defined radio 
technologies that physically connect into the fog node address some of 

these scenario requirements. 
 Narrow Band IoT (NB-IoT) is a 3GPP standard that addresses a variety 

of IoT applications and requirements and delivers on the promise of 
long-range and lower power requirements. NB-IoT is not widely 

available yet.  
 Low-Power Wide Area Networks (LPWAN) have low data transfer rates, 

higher power efficiency, and are low cost. Proprietary LPWAN 
implementations are being tested by various organizations, such as 

the LoRa Alliance and Sigfox. LPWANs are currently being investigated 

for agriculture applications because of their ability to cover large areas 
of farming and rural lands.  

 
Wireless LAN (WLAN): WLANs utilize a variety of topologies and protocols, 

but WLAN has become synonymous with WiFi. WLANs are a good 
communication choice for smaller geographical areas, often within a building 

or campus. Depending on the number of access points and the density 
requirements, WLANs may also be used in stadiums, manufacturing plants, 

and oil and gas refineries and fields. The following are some examples of 
WLANs that may be supported by the fog node: 

 WiFi (WLAN) is defined by a group of IEEE 802.11 standards. These 
standards address multiple requirements and challenges for the 

environment in which they are deployed. They support data transfer 
rates from few Mbps up to multiple Gbps. The most common standards 

are IEEE 802.11a, b, g, n, and ac. IEEE802.11ac is the latest in a 
series of evolutions of the IEEE 802.11 standards; it supports higher 

densities and transfer rates.  
 The IEEE 802.11 workgroups are currently working on new solutions to 

address the need for higher capacity, density, and speed, especially for 
IoT use cases. For example, the IEEE 802.11ax is expected to bring 

higher speeds and capacities beyond the capabilities of 802.11ac. The 
802.11ah is tailored for IoT use cases requiring low power 

consumption and longer ranges. IEEE 802.11p will define standards for 
Vehicle-to-Vehicle as well as Vehicle-to-Roadside infrastructure 

communication.  

 Future developments in free space optical communications such as Li-
Fi hold promise as options for fog wireless networking. 
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Wireless Personal Area Networks (WPAN): WPAN is characterized by a 
short communication range, low power consumption, and low cost. WPANs 

may be used with wearable devices and home management systems. WPAN 
includes the following technologies: 

 Bluetooth: Characterized by short-range communication. Specifications 
and standards managed by Bluetooth Special Interest Group (SIG). 

 Infrared (IR): Characterized by line of sight wireless communication 

over IR light waves. Specification provided by IrDA (Infrared Data 
Association). 

 ZigBee: Characterized by low power consumption, short range (up to 

100 meters, given the right environmental conditions), and low data 
transfer rates.  

 Z-Wave: Characterized by RF signaling and control mostly used in 
home automation. 

 IEEE 802.15.4 (Low Rate WPAN) also applies to WLAN use cases. It is 
also the standard that defines Layers 1&2 of the OSI model. 

 
Near Field Communication (NFC): NFC is a technology that may be used 

when fog nodes support devices that need to communicate in very close 
proximity. NFC technologies have been used in logistics and supply chain 

solutions for quite some time; now they’re being used in vertical markets, 
including frictionless solutions for retail, agriculture, and healthcare. 

Solutions like Passive RFID, which also utilizes NFC, are used for asset 
tracking and physical access.  

 

Wireless connectivity to the fog node allows the ability of various sensors 
and data to flow into the node where it will be processed. As node 

capabilities grow, it enables higher level secure communication functions to 
be utilized in the architecture. 

5.5.1.3 Network Management 

As the number of sensors and data sources increase, the need to manage all 
assets, nodes, and resources increases in importance. The ability of fog 

nodes to be supported by out-of-band (OOB) network management will help 
manage resources, security, health of the fog node, and the ability to adapt 

to changing conditions in the environment. The protocols and mechanisms 
available to manage sensors, nodes, and network devices vary based on the 

communication protocol used and the availability of connectivity options and 
CPU/memory resources. In some cases these are separate managed 

networks; in other cases the management communication is sent on the 
host network. There are multiple ways information is provided to the node, 
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and to ensure continued secure, reliable, and safe operation, it is important 

that these things and associated networks are capable of being managed 
with both sophistication and simplicity. 

5.5.1.4 Network Based Security Threats and Mitigation 

The fog node needs to be protected from various network-based security 
threats, which may include: 

 Denial of Service attacks  
 Intrusion  
 DNS spoofing 

 ARP spoofing or poisoning 
 Buffer overflows  

Fog nodes may not always be capable of protecting against these types of 
attacks. They will most likely depend on the network or adjacent devices to 

help protect them. The following are some of the common examples for 
network devices that help protect the fog node: 

 Firewalls for blocking unauthorized access. 
 Intrusion Prevention Systems (IPS). 

 Secure Remote Access using Virtual Private Networks.  
 Behavior-based anomaly detection appliances or software. 

Several instances of massive DoS attacks that used network attached IoT 
devices could have been detected much faster and potentially mitigated by 
utilizing fog driven network security. 

Please refer to the Section 10.1.3.1 for detailed discussions on the network 
and data security aspects of OpenFog architecture. 

5.5.1.5 Network Design Considerations for Fog Nodes 

Whether a fog node is being installed into an existing brownfield or new 
greenfield networked environment, the following design considerations 

should be kept in mind: 

 Physical or virtual implementation of fog node capabilities depends on 
capacity and policy needs. For example, the ownership of the physical 

infrastructure could be the factor that determines access to the virtual 
elements supported within the infrastructure.  

 Fog node-to-node communication considerations: 

o Direct or indirect 
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o Distance between any two nodes, which influences energy use, 

bandwidth, cable complexity, and cost  
o Requirement for state preservation between two nodes (in a 

backup or high availability scenario)  
o Type of communication interface and protocol  

 Capacity planning:  
o Start with the end state in mind when architecting for the 

scenario 
o Understand the impact of new traffic patterns on the fog node 

and the network as a whole 
 Streaming data readiness:  

o Volume of data expected 
 The frequency of maintenance and upgrades 

 Convergence with IT: Choosing Ethernet and IP for node-to-things 
communication may allow for easier integration with the IT 

environment and contribute to the efficiency of the system.  

5.5.2 Accelerators 

In addition to traditional CPUs, some fog nodes, especially those engaged in 
enhanced analytics, require CPU throughput in excess of what can be 

economically (power or processing efficient) provided by standard current 
server and enterprise CPU chips. In these cases, accelerator modules will be 

configured next to the processor modules (or tightly integrated) to provide 

supplementary computational throughput. Here are some examples: 

 Graphics Processing Unit (GPUs) often contain thousands of simple 

cores. For applications that can efficiently exploit their massive 
parallelism, they can be an order of magnitude faster and provide 

significant power and space savings. Multiple GPUs can be equipped on 
each standard CPU. However, to achieve this capability power delivery 

and physical and electrical connection to the node would need to be 
increased which can increase the overall node power consumption.  

 Field Programmable Gate Arrays (FPGAs) are large collections of gate-
level programmable hardware resources. They can be configured with 

custom logic designs to solve very specific problems very efficiently. 
However, depending upon deployment the additional power reduction 

compared with other accelerators may require additional lower level 
knowledge (e.g. VHDL). In many cases FPGA provide better power 

efficiency compared with discrete GPUs. 

 DSPs are specialized processors optimized to operate on signals. Some 
DSPs are general purpose, while others are optimized for special 

functions, like video compression and manipulation.  
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When choosing an accelerator for a given node, you must balance the 

following: 

 Interfaces to the node (electrical throughput and power delivery).  

 General applicability to multiple scenarios. This means the dynamic 
ability to change (programmability pillar) the accelerator to address a 

new use case. 
 Dynamically changing requirements. 

 Environmental constraints. 
 Higher level software programming interfaces and API support, 

especially the orchestration needed to discover an accelerator’s 
existence and capabilities  

The programmability pillar implies the node’s ability to be flexible in how it is 
defined to address a given problem. This late binding is especially important 

in many of the areas of interest to the OpenFog consortium. 

5.5.3 Compute 

As more and more data is processed at the edge, this will increase the 
computational requirements at the true edge of the network. Having general 

purpose computation at the edge will continue to be important. Additionally, 
larger amounts of system DRAM paired with this compute will also grow in 

importance. To ensure higher reliability and accuracy of computation we will 
start to see ECC memory start to become more prominent in the compute. 

Another key importance of fog computing is that deployment lifecycles may 
be longer so it is important that long life and compute performance is 

calculated to be sufficient throughout a deployments lifecycle. Compute is 
likely to be implemented as one or more multi-core CPU. While other 

architectures exist, it is important to balance the programmability aspects 
when considering different architectures.  

When considering a compute element, it is important to understand the 
environmental conditions it must correctly operate under. In many fog 

deployments, the compute must continue to operate well beyond 70 degrees 
C. In fact, the harshest environments of up to 100 degrees C is not 

uncommon in many parts of the world. 

The compute function embodies many requirements for fog nodes. Following 
are some examples of computational requirements: 

 Some multi-tenant installations will dedicate whole cores to each of 
their most critical applications. This capability may be required to 

ensure QoS. 
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 Memory management units may be required in fog to manage large 

virtual memory space, to isolate platform from application space, and 
to isolate applications from each other in multi-tenant environments.  

 High performance I/O subsystems are required in fog in order to 
connect each CPU with its associated accelerators, storage, and 

network peripherals.  
 In some fog node designs, the hardware root of trust is located within 

the CPU complex itself and verification of code only happens after the 
CPU verifies the signature.  

5.5.4 Storage 

Many types of storage will be required in fog nodes. As fog computing 
continues to emerge we will see storage tiers typically only seen in 

datacenters emerge on nodes as they collect and process this data across 
the hierarchy. This includes: 

 RAM Arrays: As data is created from sensors, the node will need to 
operate on that data in close to real time operation. RAM arrays satisfy 

this requirement versus additional latency when accessing non-volatile 
storage. Many fog nodes will also have on-package memory to satisfy 

the latency aspects required for certain scenarios. 
 Solid State Drives: Flash-based storage may be used for the majority 

of fog applications because of its reliability, IOPs, low power 
requirements, and environmental robustness. These include PCIe and 

SATA attached SSDs. Additionally, new classes of solid state media are 
beginning to emerge with new programming models. These include 

3DXpoint and NVDIMM-P.  
 Fixed Spinning Disks: For large, cost sensitive storage applications, 

fog nodes may contain rotating disks, sometimes arranged as 

Redundant Array of Inexpensive Disks (RAID) arrays.  
 

The actual storage medium chosen depends upon the use case; within a 
given fog node, there will typically be a hierarchy of storage options. 

Ultimately, storage devices need to meet the cost, performance (IOPS, 
bandwidth, and latency), reliability, and data integrity requirements of the 

system. In addition, storage devices in fog computing need to support the 
OpenFog pillars, particularly the security and RAS pillars. However, the 

biggest advancements will come as flash based storage technologies 
continue the march to cost/byte and access latency times of DRAM.  

Storage devices should provide support for encryption and key management 
and authentication by supporting standards such as AES-256 and TCG Opal 
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etc. The storage device should also provide real-time information and early 

warnings about the health of the media and support self-healing properties. 
Finally, in virtualized fog computing environments the storage device should 

support ID-based performance allocation by providing adjustable storage 
resources (IOPS or bandwidth) to specific applications or virtual machines. 

Supporting data encryption at rest is also important in most fog deployments 
as they will be deployed in areas where physical protection mechanism seen 

in the data center are no longer true. 

5.5.5 OpenFog Node Management  

OpenFog node management refers to manageability systems that are not 
running on the host operating system. These are generally discrete 
manageability systems that can survive and manage fog nodes in all power 

states. They are also sometimes called Hardware Platform Management 
devices (HPM).  

Most fog nodes will include a HPM that is responsible for controlling and 
monitoring the other components inside the node (e.g. storage, accelerators, 

et al). The HPM is typically a small auxiliary processor on the main CPU or 
motherboard. It has various sensors and monitoring points to track variables 

like temperature, voltage, current, and various errors. These readings may 
periodically be reported to external RAS system. If serious errors are 

detected, alarm notifications can be escalated by the HPM subsystem.  

The HPM system is also responsible for controlling the internal configuration 

of fog nodes. It may set communication parameters like IP addresses and 
line speeds. It can configure new hardware modules. If modules fail, it can 

isolate them and attempt to recover their functions. The HPM subsystem also 
cooperates with a trusted component in the chain of of trust to securely 

download software updates for the entire node. Sensors associated with the 
physical operation of fog node hardware, including ambient temperature, 

airflow, fan speed (if used), supply voltage, supply current, moisture, 
cabinet door tamper, etc., also send data through the HPM subsystem.  

In many deployments because the HPM can operate out of band with the 
main computational elements, it too will have its own TPM and go through a 

secure boot process. The HPM just like other entities should support a HW 
root of trust. 
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5.5.6 OpenFog Node Security 

As described in the Security Perspective, it is important to perform a security 
analysis and threat assessment of the fog implementation in order to 
properly identify the needs the fog node. Once this task is accomplished, you 

should have the information needed to determine the appropriate physical 
security measures, the optimal method for establishing and maintaining 

trust, and what type of policies to put in place in order for the fog node to 

securely manage and respond to its environment. 

5.5.6.1 Physical Security and Anti-tamper Mechanisms 

The level of physical security supported by a fog node should be aligned with 

the security policy for that device and threat level. This will depend on how 
difficult it is to access system components and what the consequences are if 

the system is breached. The location of the fog node and the degree of 
physical access available in that location will play a role in the evaluation. 

Fog nodes located in open public spaces such as shopping malls, street 
corners, utility poles, and even in a personal vehicle will provide greater 

opportunity for a physical attack. Note: There may be industry specific 
standards and requirements for providing physical security for these devices. 

These are not addressed here. 

The goal of anti-tamper mechanisms is to prevent any attempt by an 

attacker to perform an unauthorized physical or electronic attack against the 
device. Anti-tamper mechanisms can be divided into four groups: 

 Resistance 
 Evidence 
 Detection 

 Response 

It is important that legitimate maintenance measures should not damage the 

node due to anti-tamper mechanisms. To help prevent this, the node might 
have a special maintenance mode that can be configured by an authorized 

entity so that the tamper response is disabled while maintenance is in 
progress and then re-enabled.  

5.5.6.2 Tamper Resistance 

Tamper resistance uses specialized physical construction materials to make 
tampering with a fog node difficult. This can include such features as 

hardened steel enclosures, locks, encapsulation, or security screws. 
Implementing tight airflow channels (that is, tightly packing the components 
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and circuit boards within the enclosure) will increase the difficulty of using 

fiber optics to probe inside the node without opening the enclosure. When 
we look at the node view, this includes all interfaces enabled by the SoC 

manufacturer. Many manufacturers enable special modes of operation called 
manufacturing or test modes. These modes of operation must be protected 

from tampering from physical attack after the node is deployed.  

5.5.6.3 Tamper Evidence 

The goal of tamper evidence is to ensure that, when tampering occurs, 
visible evidence is left behind. Tamper evidence mechanisms are a major 
deterrent for minimal risk takers (e.g., non-determined attackers). Many 

kinds of tamper evidence materials and devices are available, such as 
special seals and tapes that make it obvious when there has been physical 

tampering. In the previous example, tampering could notify the HPM to 
ensure higher level management entities can determine tampering without 

physically being present. 

5.5.6.4 Tamper Detection 

Tamper detection means that the system is made aware of unwanted 
physical access. The mechanisms used to detect the intrusion typically fall 

into one of three groups: 

 Switches, such as micro switches, magnetic switches, mercury 
switches, and pressure contacts, detect the opening of a device, the 

breach of a physical security boundary, or the movement of a 
particular component. 

 Sensors, such as temperature and radiation sensors, detect 
environmental changes. Voltage and power sensors may detect glitch 

attacks. Ion beams may be used for advanced attacks to focus on 
specific electrical gates within an integrated circuit. 

 Circuitry, such as flexible circuitry, nichrome wire, and fiber optics 

wrapped around critical circuitry or specific components on the board, 
is used to detect a puncture, break, or attempted modification of the 

wrapper. For example, if the resistance of the nichrome wire changes 
or the light power traveling through the optical cable decreases, the 

system assumes there has been physical tampering.  
 Mesh enclosures, such as Gore’s Tamper Responsive Surface 

Enclosure, are designed to protect the physical security boundary of a 
fog node and combine a number of tamper evidence and detection 

features. 
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All of these tamper detection mechanisms typically provide a hardware 

security violation signal to a security monitor when they are tripped.  

5.5.6.5 Tamper Response 

Tamper response mechanisms are the countermeasures taken when 

tampering is detected. The response to such an event should be 
configurable.  

 Soft Fail: Sensitive data is cleared and a second interrupt signal is 
sent to the security monitor to confirm this has been done so that it 
can restart the processor and continue execution. 

 Hard Fail: The actions for a Soft Fail are performed, plus the caches 
and memory are zeroed and the system is reset. Both lower and 

higher consequences may be available. The lowest consequence would 

be to do nothing, or the event can be logged for later analysis. An 
example of a higher consequence might be “bricking” the device. This 

means that after zeroing all sensitive data, caches, and memory, the 
node cannot be booted again and must be replaced. 

The response to tampering needs to be understood and planned for by 
higher levels in the fog architecture. This dependency is often overlooked in 
system deployments and therefor an attack surface commonly exploited. 

Thus, response of Nodes must be understood by the System, and the 
Software running on them.  

5.5.6.6 Establishing and Maintaining Trust 

5.5.6.6.1 Trusted Computing Base  
The Trusted Computing Base (TCB) refers to the platform hardware, 

software, and networking components that, if violated, would compromise 
the ability of the system to enforce its security policies. The more 

components and code that are in a TCB, the harder it is to guarantee that it 
is free of bugs and security vulnerabilities. It is desirable to ensure that the 

TCB is as small as possible to minimize its attack surface. Sometimes 
however, this is not achievable due to the complexity of the system required 

to satisfy a particular use case. Creating multiple isolated and protected 
regions from the rest of the system is one way of creating smaller TCBs to 

reduce the attack surface within a complex system environment. 

5.5.6.7 Hardware Root-of-Trust 

At the heart of the TCB and the security of the fog node is the root of trust. 
There must be no opportunity for malicious actors to highjack the early 

initialization or boot processes. Security needs to be anchored in the 
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hardware so that it cannot be circumvented. The Hardware Root of Trust 

(HW-RoT) is the key to a fog node’s TCB. 

5.5.6.7.1 Secure or Verified Boot (HW-RoT for Verification) 

Minimally, fog nodes should support a HW-RoT for verification of the boot 
process. Secure or verified boot is an architecture for loading and verifying 

signed firmware images, boot loaders, kernels, and modules. It is important 
to note that this does not necessarily make use of a TPM even if one is 

present.  

There are many implementations of verified boot. The process begins 

execution with code loaded from an immutable Read Only Memory (ROM); 
the compute entity in the fog node may only operate upon cryptographically 

signed images. Secure boot implementations may be proprietary in nature. 

It is recommended that system architects verify the capabilities and validate 
the security strengths of a verified boot implementation. There should be no 

mechanism to circumvent the signature method. Additionally, it is important 
that the HW-RoT not execute non-verified code. This includes option ROMs 

from PCIe devices and other elements that comprise the node view. 

5.5.6.7.2 Trusted or Measured Boot (HW-RoT for Measurement) 

Trusted booting is different from secure booting because higher level 
software can attest (programmatically verify) that firmware running is 

secure. One example approach, as described by TCG, defines methods to 
perform this function using a TPM. As code executes, it creates a 

cryptographic digest of the code modules that are stored in the TPM. The 
TPM term used for the storage space for each of these chains is Platform 

Configuration Register (PCR). A PCR can be thought of as a single trust chain 
used for some specific purpose. This is only one example of many possible 

implementations. Other implementations exist while still others may be 
described by future innovations. As for verified boot, it is recommended that 

system architects verify the capabilities and validate the security strengths 
of a measured boot implementation. 

5.5.6.7.3 Securing the Boot Process 

It is critical that the fog node has a method to securely establish a root of 
trust, and that trust is authenticated and extended through the remainder of 
the boot process in order to ensure that the node can be trusted.  

A fog node must provide a method for ensuring that the firmware and 
system software have not been tampered with before components are 

executed. There are various methods in which this can be achieved. The 
selected and implemented solution to this requirement should be in 
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agreement with your organization’s findings during the security analysis and 

threat assessment.  

5.5.6.7.4 Identification 

A fog node must be able to identify itself to other entities within the 
network, and entities that request services from the fog node must be able 
to identify themselves to the fog node. The best method for this 

identification is to have an immutable identifier with attestation. Attestation 

is the ability of a system to provide some non-forgeable evidence to a 
remote third-party verifier. One such approach that can enable fog systems 

to verify or attest to credentials of a given system while preserving privacy 
is the use of a Direct Anonymous Attestation (DAA) implementation. 

5.5.6.7.5 Attestation 

The security of systems that employ trusted processors depends on 

attestation (often referred to as remote attestation or software attestation). 
In a fog computing hierarchy, a remote attestation agent can attest to the 

authenticity and secure state of a fog system. Depending on the method 
used to create the chain of trust (i.e., either measured or verified), and 

therefore the trusted environment, the remote agent will attest to different 
properties and data. For a system which uses measurement to build the 

chain, the remote attestation agent would be able to remotely verify that the 
HW-RoT of measurement for a given fog node is correct. In either case, the 

objective is to be able to attest to the fact that the firmware and software 
running on it are known or trusted. If the firmware running on a given 

system fails attestation, it should not be used and remediation should occur. 
While there are a number of implementation options available for remote 

attestation, the OpenFog Consortium will work with the TCG and other 
standards-based approaches for remote attestation across multiple 

interfaces. 

 System Architecture View 

The system view of the OpenFog RA is composed of one or more node views 
coupled with other components to create a platform. The stakeholders which 

typically create these systems to facilitate a fog deployment comprise the 
concerns of this viewpoint. Subsequently this view is intended to address the 

concerns of the system architects, hardware OEMs, and platform 

manufacturers. They also need to understand the Node view such that the 
systems they create can be deployed to address a given scenario. The 

following diagram shows our visual representation of a system view. We only 
show a singular composite image of a node embedded within it, but we also 

support the notion of multiple nodes being brought to create a system for 
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deployments that require redundancy or to satisfy other deployment 

requirements. 

 
Figure 22 System Architecture View 

5.6.1 Hardware Platform Infrastructure 

Fog platforms must provide robust mechanical support and protection for 
their internal components. This first starts with components selected in the 

Node view and extends into the system view. In many deployments, fog 
platforms must survive in harsh environmental conditions, as described in 

the next section. Some requirements for fog platform enclosures (called the 
hardware platform infrastructure in the system architecture) include: 

 Compliance with local regulations and standard practices. 
 Protection from environmental factors (industrial or commercial 

temperature-rated components). 
 Resistance to physical attack, vandalism, or theft. 

 Acceptable size, power consumption, and weight properties. 
 Functional safety requirements to protect people and things from 

harm. 
 Mechanical support of internal components. 

 Management of cooling for internal components. 
 Support for node-level modularity and the ability to build and modify 

many configurations. This includes the ability to extend the function to 
address different deployments. 

 Serviceability aspect of a platform. 
 Acceptable aesthetics and other factors as fog platforms are deployed 

in the world around. 
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5.6.1.1 Environmental Conditions 

Many fog platforms will be deployed in harsh environmental conditions. This 

means they should have specifications that comply with various international 
safety and environmental responsibility standards, such as UL, CSA, ROHS, 

and WEEE. Examples of safety and environmental requirements include: 

 Temperature ranges required by vertical industries, such as industrial, 
automotive, and military. Many systems also cannot operate in 

temperatures higher than 60 degrees C. The following temperatures 
are generally accepted as norms and represented in Celsius.  

o Commercial temperatures: 0 – 70 
o Industrial: -40 – 85  

o Military: -55 – 125 

 Environmental hazards, including humidity, shock, vibration, 
contamination, earthquake, and extreme solar load.  

 International protection marking (IEC standard 60529) up to the IP 68 
level (for example, a waterside node that may be subject to flooding).  

5.6.1.2 Thermal 

Depending upon deployment, fog platforms for harsh location deployment 

may be environmentally sealed. They should not require any fans or other 
active elements to maintain safe internal temperatures. They should not 

require air filters. However, due to the high-power dissipation and high 
packaging density of some higher performance fog nodes, especially those 

with large accelerator arrays, active cooling options are allowed. If forced-air 
cooling is used, air filters are required to reduce particulate contamination. 

Fans on critical fog nodes should be redundant, so that if a single fan fails, 
the fog node can continue at full capacity on the remaining fan(s). The 

thermal deployment scenario will dictate the enclosure used. 
There is a strong correlation to power delivery, performance, and heat 

dissipation. This needs to be taken in consideration when designing the 
overall solution.  

5.6.1.3 Modularity 

Most fog nodes will be modular. On smaller designs, modularity could consist 

of a motherboard containing the common fixed components, and a few 
modular sockets into which configurable components may be installed. Most 

modular systems also have to trade-off capabilities for that modularity. For 
example, a modular adapter may require the use of a different enclosure to 

enable the in-field upgrade, but this modularity can also provide more levels 
of serviceability.  

 

Examples of configurable components include: 
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 Faster CPUs 
 Different RAM components  

 Different storage configurations 
 Configurable I/O to support both southbound edge interfaces and 

northbound networking interfaces. 
o Network interfaces, including varying numbers of wire line and 

optical interfaces with configurable physical layer options. 
o Southbound interfaces like RS232, Modbus, etc. 

 Accelerators including FPGAs, etc. 

Moderate sized fog platforms may substitute a backplane for the 

motherboard, and support modularity through the installation of boards into 
that backplane. This is typically seen in near edge or on-premises fog 

platforms. The largest fog platforms will resemble high capacity blade 
servers, supporting many modules, including high-end multi-socket CPU 

farms, large GPU arrays, petabyte class storage, and potentially thousands 
of I/O links. 

A good example of these sizes in a deployment scenario are the fog 
platforms that required to support machine vision. A training system near 
the edge would utilize the larger fog platforms to train a neural network. The 

moderate sized fog platforms would take the trained model and use that for 

inference or recognizing images dynamically across many different video 
streams. A smaller fog platform could be embedded in a camera and utilize 

an embedded accelerator to recognize images coming off of a singular 
camera feed. 

5.6.1.4 Module-Module Interconnect 

Modular fog platforms may require interconnection between internal 
modules. These interconnections may be connected between a motherboard 

and daughterboard, or board-board over a backplane. Hundreds of GB/s 
may be required for module-module interconnection. The transport could be 

wire, optical, or other means. The connection between modules is 
sometimes referred to as a fabric.  

In the largest fog platform, one or two fabric modules can be used as a 
central hub. The CPU, accelerator, storage and networking modules are used 

as spokes in a star topology. Ideally these interconnect facilities should 
conform to open standards like PCI Express or Ethernet to facilitate a widely 

interoperable hardware ecosystem. 
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5.6.2 Hardware Virtualization and Containers 

Hardware-based virtualization mechanisms are available in almost all 
processor hardware that would be used to implement fog platforms. It may 
also play an important role in system security. Hardware virtualization for 

I/O and compute enables multiple entities to share the same physical 
system. Virtualization is also very useful in ensuring that virtual machines 

(VMs) may not utilize instructions or system components that they are not 

by design supposed to utilize.  

Containers are a relatively new technology. Containers may offer a lower 
weight isolation mechanism within a fog computing environment. The 

isolation guarantees are only made by the OS and not fully based in silicon. 
This shifts the isolation requirements from the silicon to the software running 

on the silicon. The decision to use containers or VMs for isolation are usually 
based on security considerations for a given use case. We will discuss 

containers in greater depth in the software view. 

 Software Architecture View 

 
The software view of the OpenFog RA is composed of software running on a 

platform that is comprised of one or more node views coupled with other 
components to create a system addressing a given scenario. The 

stakeholders of the software view include the system integrators, software 
architects, solution designers, and application developers of a fog computing 

environment. The software running on fog platforms is used to satisfy a 

given deployment scenario. A robust fog deployment requires that the 
relationship between a fog node, fog platform, and fog software are 

seamless.  

5.7.1 Software View Layers 

As shown in the figure below, the software of the fog node can be separated 

into three layers that sit on top of the platform hardware layer.  

Application Services: Services that are dependent on infrastructure 
provided by the other two layers, fulfill specific end use case requirements, 

and solve domain specific needs. 

Application Support: Infrastructure software that does not fulfill any use 

case on its own, but helps to support and facilitate multiple application 
services. 
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Node Management and Software Backplane: General operation and 

management of the node and its communications with other nodes and 
systems. IB in the diagram refers to In Band management. This is generally 

how software interacts with the management subsystem. 
 

 
Figure 23 Software Architecture View 

5.7.1.1 Software Backplane and Node Management 

5.7.1.1.1 Software Backplane 

The software backplane is required to run any software on the node and 
facilitate node-to-node communications (east-west as well as north-south). 

This includes: 

 OS: May include unikernels that operate on top of a virtualization 
layer and extend all the way to application micro services. 

 Software drivers and firmware: Interface with and enable 

hardware. 
 Communication services: Enable communications and might help 

to define software-defined networks and protocol stacks 
 File system software 

 Software virtualization: To provide hardware-based virtualization 
support for running software and application micro services. 

 Containerization: To provide OS based isolation support for 
running software and application micro services. 
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Software containers provide a good mechanism for fine-grained separation 

of applications and micro services running on the software backplane. A 
software container, unlike a VM, often does not require or contain a separate 

OS. A container uses resource isolation of the CPU, memory, block I/O, 
network, etc., and separate namespaces to isolate the application's view of 

the operating system. 

Within a container, applications can be configured, resources isolated, and 

services restricted. Multiple containers share the same kernel, but each 
container can be constrained to only use a defined amount of resources, 

such as CPU, memory, or I/O. 

Containers facilitate highly distributed systems by allowing multiple 

applications to run on a single physical compute node, across multiple VMs, 
and across multiple physical compute nodes. This is a critical capability for 

the elastic compute environment needed for fog computing. 

Security of the software backplane is the component by which trust is 

established in the software layers above the backplane. The backplane 
should provide a means of verification of the application support and 

services layers by use of the chain of trust established by the node and 
platform. This verification may extend to remote attestation to an external 

system. 

In order for containers, their application services, and micro services to be 

securely initialized and provide their intended services, the software 
backplane should enable the root of trust to be extended. Because the 

software backplane manages the creation and retirement of trusted 
execution environments and/or containers at the upper layers of the 

software stack, it is critical that the upper layers are able to verify attesting 
entities. The software backplane should define a policy by which it enforces 

responses based off data it receives from other devices. These policies may 
be as specific as only allowing communication with devices that use specific 

firewall rules, application mix, and installed patches. Or it may be more open 
policies, such as requiring a specific OS release. 

The Software Backplane layer orchestrates thing-to-fog, fog-to-fog and fog-
to-cloud communications. This layer must and should provide data 

confidentiality and integrity services to protect communications in all 
directions and must and should enforce data-origin and peer-to-peer 

authentication on connectionless and connection-oriented communications 
respectively. Nonrepudiation of data origin and destination may also be 

provided in this layer to north, fog-to-fog in order to support remote 
attestation required to support trusted computing. These services should 

derive their security and trustworthiness from the security credentials issued 
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by the Security Management maintained in the Hardware Root-of-Trust. All 

communications (wired or wireless) across the Software Backplane must use 
a base list of standard cryptographic functions to provide confidentiality, 

integrity, authentication and non-repudiation services[Section 10.1.1]. For 
performance reasons, these cryptographic functions are often performed by 

the Crypto Accelerators installed in the fog node. The following describes 
some additional facets of the Software Backplane: 

 
 Service discovery: Is essential when multiple fog deployments 

need to come together they are able to create multiple trust 
boundaries in an ad-hoc manner for the purpose of cooperative 

information exchange and computation. Establishment of trust 
between fog deployments for transient collaboration requires well-

founded trust framework and trust provider service graph. 
 Node discovery: Applies to intra-fog discovery in a clustered 

deployment. When a new fog system is added to the cluster, it will 

broadcast its presence and joins the cluster. From then on, this 
node is available for sharing the workload. 

 State management: Support for both stateful and stateless 
computational models. Stateful computational model can 

externalize the state or store the state within the fog cluster 
through a resilient replica model. Consensus algorithms may be 

utilized to ensure that multiple replicas of the same entity are 
eventually synchronized for preventing data loss. Externalized state 

requires the help of session/state micro-services that run on top of 
well-known database and storage technologies.  

 Publication and subscription management: Application layers 
running on top of fabric runtime will need infrastructure support for 

publication of events, notification of state changes, and broadcast 
of messages. The publication and subscription management 

mechanism will support temporal as well as standing subscriptions 

and pluggable notification endpoints. The runtime stays abstract; it 
is the applications layer that composes payload pushes to the 

destination endpoints through the runtime layer. 

5.7.1.1.2 Node Management (In Band) 
When describing management, it is often acceptable to overload the term 
“node” with system. The fog In Band management layer is responsible for 

keeping the hardware and software of the fog node or system configured to 
the desired state, as well as keeping it running at specified levels for 

availability, resilience, and performance. The composition of the 
management layer will vary, in order to support fog nodes designed with 

different capabilities. For embedded and standalone deployment models, 

node management may be handled from a remote location. The hardware 
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platform management subsystem of the fog nodes cooperates with software 

on the main processor to perform this node management. The following are 
the list of capabilities needed by each fog node:  

 Configuration management: Operating system and application 
support configuration is managed through a software agent that 
maintains the desired state of the OS and the application runtime. 

Agents are an optional aspect of node management as the deployment 
cost. 

 Operational management: Operational telemetry of the fog nodes 
will be captured, stored, and presented for systems management 

personnel and automated systems responsible for monitoring the 

infrastructure. The information includes network operational events 
and alarms generated by the network, OS, and applications. The 

monitoring systems will manage the operational workflows for acting 
on critical alarms. The remediation of those alarms can be automated 

or manual depending upon the alert. 
 Security management: Security management includes key 

management, crypto suite management, identity management, and 
security policy management.  

 Capacity management: Monitor the capacity and page in additional 
compute, networking, and storage resources as demanded by the 

workload.  
 Availability management: Critical infrastructure requires automatic 

healing in the event of the malfunction or crash of the software or 
hardware. The workload will be relocated to a different hardware node 

if hardware fails. In the event of a software failure, the VM or 

container may be recycled. Enough reserve system capacity should be 
kept in a ready state to meet any SLAs for the given scenario.  

5.7.1.2 Application Support  

Application support includes a broad spectrum of software used by and often 
shared by multiple applications (micro services). Application support is 

neither domain nor application specific, but may be dependent on the 

underlying layers (including virtualization, hardware, etc.). As shown in the 
figure below, depending on the deployment type or application, support 

software may be provided in multiple forms (e.g., the use of multiple 
application storage databases may be required in some deployments on 

some nodes).  
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Figure 24 Application Support 

 

While not required, elements within the application support layer may often 

be containerized deployed in some form of virtualization as provided by the 
software backplane. As examples, a message broker or NoSQL database 

which are used by several applications (within the applications services layer 
– see the figure below) within the Fog node, may itself be independently 

containerized and offer its supporting capability via the bounds of that 
containerization.  

 

 
Figure 25 Containerization for Application Support 

 

The containerization or virtualization of any support layer capability provides 
looser coupling, additional security, and can even allow the backplane to 

scale the supporting layer more quickly/easily. 
 

 
Application support includes the following: 
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 Application management: The provisioning, verification, updating, 

and general management of the application support software, as well 
as application micro services. The same mechanisms also manage 

configuration images for accelerators like FPGAs and GPUs. Application 
management covers:  

o Application provisioning: The network runtime will host 
provisioning agents for receiving and acting on application 
provisioning requests from the management system. The 

management software will then use the application manifest 
to pick the right image from a versioned image store. The 

provisioning agents will help with the rollback requests.  

o Image (application bits) management: The fabric runtime 
layer will need the support of an image management 

framework hosted as a part of the fabric control 
infrastructure. The image management interface may include 

image verification for trust, malware, versioning, and 
dependency management.  

o Image verification: Fabric runtime, by default, only runs an 
image that is verified to be safe. This requires the fabric 

controller to support code authentication schemes like PKI. 
o Version management: The image management framework 

will allow the deployment of a particular version of the image. 
The create, read, update, and delete (CRUD) functions for 

storing the image are essential for populating the image store 
and provisioning a particular version in case of rollbacks.  

o Transparent updates: Depending on the stateful or 

stateless behavior of the hosted application endpoints, the 
fabric runtime will spread multiple instances of the same 

application into update zones. This enables the runtime to 
visit and update one update zone at a time, ensuring that the 

entire application is not taken down.  

 Runtime engines: VMs, containers, platform runtimes, program 
language libraries, and executables provide the execution 

environments for applications and micro services. Examples 
include: Java Virtual Machines, Node.js (JavaScript runtime), NET 

Framework, Python Standard Library and runtime executables. 

 Application servers: Application or web server hosting micro 
services or other node supporting infrastructure or applications. 

Examples include: Wildfly/JBoss, Tomcat, and Zend Server. 
 Messages and events (buses or brokers): Support for message 

and event-based applications and micro service communications 
(often categorized under message oriented middleware, message 
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broker, message bus, etc.). Examples include: message DDS, 

ActiveMQ, and ZeroMQ. 
 Security services: Support for application security including 

encryption services, identity brokers, etc. Security services within 
the application support layer may also include deep packet 

inspection, intrusion detection and prevention systems, as well as 
system and network event monitoring, content filtering, and 

parental control. Details of these are included in the security 
appendices. 

 Application data management/storage/persistence: 
Application data transformation capability and storage to include 

durable persistent as well as in-memory caches. Persistent storage 
may include both SQL and NoSQL databases, but other forms of 

durable storage should be considered, such as in-memory 
databases and caches (to address latency and performance 

concerns). Examples include: SQLite (SQL), Cassandra & Mongo 

(NoSQL), and Redis or Gemfire (in-memory databases). 
Considerations within this layer include: 

o Encoding/decoding/transcoding:  

 Decoding: From binary to JSON for application layer 
processing. For example, protocol translation from OPC 

UA/DDS/LONWORKS binary to JSON.  
 Encoding: From application layer payload to binary for 

transmission. For example, from JSON into OPC UA 
binary 

 Transcoding: Translation of a data structure from one 
format to another format within the same layer, 

possibly using a gateway  
 Encryption/decryption: Data in motion as well as 

data at rest 

o Information persistence/cache 

 Enable storage of structured and unstructured data 
 Durable/non-durable (e.g., in-memory, local disk, 

external storage service) 

 Pluggable into the encoding/decoding/transcoding pipe 
and filter process 

 Support streaming and batching models 
 Support multi-tenancy (e.g., information isolation 

between scopes/profiles) 
 Store and forward capability 
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 Special support for digital media content (e.g., digital 

rights management, add insertion) 

 Analytics tools and frameworks: Examples include Spark, Hadoop, 
and other MapReduce types of technologies. 

5.7.1.3 Application Services Layer 

Fog node applications will vary greatly based on deployment, use case, and 

resource availability. Fog computing applications are composed of a loosely 
coupled collection of micro services. As shown in Figure 31, these services 

can be separated into layers based on their roles. 

 
Figure 26 Application Services Layer 

 

Applications, as with application supporting services, may run inside of 
containerized/virtualized environments as offered by the software backplane. 

These applications may take advantage of support layer services (like a 
database or message broker) that are containerized or may run on or be 

deployed to containerized supporting services (like a runtime engine). 
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Figure 27 Containerization for Application Support 

Fog connector services are used at the "south side" of the architectural 

application layer – that is the interfaces in the direction of the IoT things. 
This includes legacy transports like Modbus et al. These micro services 

contain a set of APIs for enabling higher-layer fog services to communicate 
with devices, sensors, actuators, and other platforms using the edge 

protocol of choice. Fog connectors operate on top of the protocol abstraction 

layer to translate the data produced and communicated by the physical 
things into a common data structures/formats and then send that into the 

core services.  

Core services separate the edge from the enterprise. Core services collect 
data from the edge and make it available to other services and systems 

above, such as the cloud. Core services often route enterprise and other 
system requests to the appropriate edge resource, sometimes translating 

the requests for edge devices. This translation is a function of the fog 
connectors, which contain a set of APIs for receiving and translating 

commands from higher-level fog computing services (or the cloud) to edge 

devices for actuation. 

Supporting services encompass a wide range of micro services that provide 
normal software application duties, such as logging, scheduling, service 

registration, and data clean up. 

Analytics services may include both reactive as well as predictive capability. 

Closer to the edge, fog nodes will likely have services that are more reactive 
in nature. Fog nodes with more processing power and capability (usually 

farther from the edge) will have more predictive capability based on machine 
learning and other cognitive services. 
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Reactive analytics look at the raw incoming data and monitors for change = 

outside of expected norms. This includes but is not limited to: 

 Critical event processing 
 Simple anomaly detection 

 Data out-of-bounds alert triggering 
 Sensor fusion with stream processing 

 Supervisory / distributed control  
 State machine and state machine engine 

 Expression language (versus SDK) for moving around the state 
machine 

 SDK and/or API set to provide/update rules to the event processing 

engines. 

Predictive analytics are defined as forecasting analytics. This includes but is 
not limited to: 

 Fog node machine learning can support fog-only or hybrid models 
where some aspects (say training) are performed in the Cloud, while 

more processing intensive and high scale aspects (say an inference 
engine) execute in the fog. Models may be generated in the cloud and 

communicated down to the fog node agents for use. 
 Connectivity to machine learning or other predictive-styled analytics 

engines that may be running off-node. 
 The development of actionable intelligence gain from a collection of 

sensor/devices that typically could not be derived from a single sensor 
or device (referred to as sensor fusion). Data can be fused from similar 

sensors measuring in parallel (like an array of security cameras), or 
different sensors monitoring different (but interrelated) parameters. 

Sensor fusion may also include information securely collected from 
outside the node, such as information from the Internet. 

 SDKs and tools focused on how to connect predictive or machine 
learning algorithms to the stream of data, model creation, etc. 

Integration services allow outside fog nodes to register for data of interest 
collected or generated by the fog note and dictate where, when, how, and in 

what format the data should be delivered. For example, a client may request 
that all temperature-related data be sent via REST to a prescribed address, 

every hour, encrypted, and in JSON format. Integration services then 
provide the means to deliver the data using a pipe/filter mechanism as 

specified at the time of client registration. 

User interface services are micro services dedicated to the display of: 
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 Data collected and managed at the fog node 

 Status and operation of services operating at the fog node 
 Results of analytics processing at the fog node 

 System management and fog node operations 
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6 Adherence to OpenFog Reference 

Architecture 

The OpenFog Consortium intends to partner with standards development 
organizations and provide detailed requirements to facilitate a deeper levels 
of interoperability. This will take time, as establishing new standards are a 

long and ongoing process. Prior to finalization of these detailed standards, 
the Consortium is laying the groundwork for component level interoperability 

and eventually certification. The OpenFog Testbed working group, in 

conjunction with the Technical Committee, will provide the details for 
OpenFog adherence to the architectural principles and various views that will 

be shown through our testbed initiatives. They will be used for the various 
technologies that can support the OpenFog RA and overall solutions to a 

given scenario. A technology that is used to facilitate part of a fog solution is 
termed OpenFog Technology Ready.  

 
Figure 28 OpenFog Technology Ready 

 

An OpenFog architectural E2E solution to a scenario is what we call OpenFog 
Ready. 

 
Figure 29 OpenFog Ready 

 
Prior to standardization the Consortium will leverage its technical working 

groups to score various implementations that claim to OpenFog or fog 

computing implementations. This scoring and the subsequent appeals 
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process will be visible to members and will be published to highlight and 

recognize progressive fog computing implementations and those that do not 
follow the OpenFog architectural principles and OpenFog reference 

architecture. 
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7 An End-to-End Deployment Use Case 

Earlier, we described how the OpenFog RA would be used by developers, 
designers, and architects to create solutions for vertical market use cases. In 

the chapters that followed, the OpenFog RA provides the details of a generic 
fog platform. In this section, we address an end-to-end use case.  

 Airport Visual Security  

Visual security (surveillance) for airports provides an excellent end-to-end 

scenario for fog computing. It illustrates the complex, data-intensive 
demands required for real-time information collection, sharing, analysis, and 

action. 

First, let’s look at the passenger’s journey: 

 Leaves from home and drives to the airport 
 Parks in the long-term parking garage 

 Takes bags to airport security checkpoint 
 Bags are scanned and checked in 

 Checks in through security and proceeds to boarding gate 
 Upon arrival, retrieves bags 

 Proceeds to rental car agency; leaves airport 

 
Figure 30 Airport Scenario 

 
This travel scenario is without incident. But when we introduce any type or 

number of threats into this scenario, the visual security requirements 
become infinitely more complicated. For example: 

  
 The vehicle entering the airport is stolen 

 The passenger’s name is on a no-fly list 
 The passenger leaves his luggage someplace in the airport 
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 The passenger’s luggage doesn’t arrive with the flight 

 The luggage is scanned and loaded on the plane, but it is not picked 
up by the correct passenger. 

 An imposter steals (or switches) a boarding pass with another 
passenger and gets on someone else’s flight. 

 The passenger takes someone else’s luggage at the arrival terminal 
 

Catching these possible threats requires an extensive network of surveillance 
cameras across the both airports (several thousand cameras at each 

airport). An IP H.264 or H.265 camera produces 12Mbps at 30fps (frames 
per second) or approximately 1TB/day per camera that must be transmitted 

to security personnel. Or, more likely, the video streams will be forwarded to 
local machines for scanning and analysis.  

 
In addition, law enforcement will need data originating from multiple 

systems about the passenger’s trip, from the point of origination to arrival. 

Finally, all of this video and data must be integrated with a real-time threat 
assessment and remediation system. 

7.1.1 Cloud and Edge Approaches 

In an edge-to-cloud design, every camera (edge device) in the airport 
transmits directly to the cloud for processing, as well as the other relevant 

data collected from the passenger’s travel records. 

 

 Advantages Disadvantages 

Edge-to-
Cloud 

Approach 

 Store shared data 
in a common 

location 

 Historical 
analytics for 

threat prevention 
planning 

 Latency (inability to process 
images and alert authorities with 

millisecond turnaround) 

 High cost of data transfer 
 Reliance on always available cloud 

Edge-only 
Approach 

 Low latency  Limitations in sharing data and 
information across systems within 

the airport. 
 Limitations with sharing data 

between airports in near real time 

 

In both of these approaches there are advantages and disadvantages. 
However, in both cases we believe that the disadvantages in Edge-to-Cloud 

and Edge-Only drive the requirement for Fog computing. 
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7.1.2 Fog Computing Approach 

 
The power of fog computing is that we can insert computation where it is 

needed to address the given problem. Before going into the solution let’s 
look at the OpenFog pillars and how they relate to our specific use case. 

 
Figure 31 Key pillars of the OpenFog Architecture 

The OpenFog pillars covered in great detail in chapter 4 are present 

throughout the airport visual security E2E architecture. There are some that 
require special attention because of this specific deployment scenario.  

 Security: The airport visual security scenario is a physically 

distributed Fog deployment. Thus, physical possession is in scope for 

our security analysis. Transportation and storage of data must also be 

secure as much of the data which may contain personally identifiable 

information. 
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 Scalability: is essential for OpenFog implementations to adapt with 

the business needs as it relates to system cost and performance. 

When you add a new airport terminal, gate, or additional sensors and 

equipment the solution must scale and not require a completely new 

deployment. 

 Open: Openness is essential for the success of a ubiquitous fog 

computing ecosystem for IoT platforms and applications. Proprietary or 

single vendor solutions can result in limited supplier diversity, which 

can have a negative impact on system cost, quality and innovation.  

 RAS: The various aspects of the solution must be reliable, available, 

and serviceable which includes orchestration of existing or new 

resources. As new object recognition models are trained for visual 

analytics, these inference engine models should be updated on near 

edge devices without impacting availability of the solution. 

 Programmability: Visual analytics is utilized to facilitate this scenario 

and hence programming at the hardware is utilized. In our 

implementation, we may utilized accelerators such as FPGAs to 

perform inference on images as they are seen in the scenario.  

 

The OpenFog reference architecture includes several layers, perspectives or 

cross cutting concerns, and views to enable an OpenFog implementation for 
the airport visual security scenario. 

 

 
Figure 32 OpenFog Architecture Description 

In this visual security scenario, we focus on the platforms, data analytics, 

performance, and higher-level software infrastructure. 
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 Performance: indicates that we need to include time to adequately 

process the information and provide useful latency sensitive 

information to enact an action. 

 Platforms: indicates we need to have the correct hardware platforms 

with the appropriate accelerators and communications infrastructure 

needed to have each Fog node communicate with each other to 

address the scenario. 

 Data Analytics: means that as we process this information at the 

individual Fog nodes, those nodes that are nearest the edge enable 

higher level intelligence at each level in the hierarchy. 

 Software Infrastructure: indicates we can transition the data, 

intelligence, and environments across various Fog node deployments 

and enable higher-level computation. 

The core aspects of a fog node can also be viewed as compute, storage, 
network, accelerators and control.  

 

7.1.2.1 Functions of a Fog Node for Visual Security 

 

 

Figure 33 Node view for Visual Security 

 
 

Sensors, Actuators and Control 

In the end-to-end fog computing implementation, we start with the sensors 

at the edge of the network. Previously, we discussed the number of cameras 
in an airport surveillance installation, and the volume of data generated by 

these many thousands of cameras. In addition to cameras, there is a wealth 
of other edge devices collecting data that can be useful in preventing a 

threat. These include: 

 

Physical security sensors  Gates, doors, motion detectors, 
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etc. 

Safety sensors  Fire, smoke, heat, and bomb 
sensors. Note: these independent 

systems can either be on the 
Ethernet or stationed behind a fog 

node (see next section on legacy 

protocol bridges).  

Audio sensors and basic audio 

analytics 

 Audio sensors can capture voices 

and sounds that may be important 
in detecting and assessing 

threats; this audio information can 
be forwarded for basic audio 

analytics and alerts sent to higher 
levels in the hierarchy for 

processing. 

RFID sensors 
 RFID sensors can be used to 

gather information from 

passengers, such as passport 
information 

These sensors are connected to the fog node via a multitude of interfaces. 
These should be standard open interfaces like PCIe, USB, Ethernet, etc. They 

should also support open APIs but their implementation may be proprietary. 

This is important to ensure openness. After they are connected, they can be 
used by higher level software. For example, the RFID reader would be 

hooked up to the Fog node by Ethernet or USB. The fog node can them 
utilize the data and provide that to higher level entities. 

 
Protocol Abstraction Layer (Legacy Protocol Bridge): A fog computing 

solution doesn’t require a “greenfield” deployment; it assumes that there will 
be mixture of analog cameras combined with digital cameras. One method to 

convert the analog feed is to utilize accelerators (low cost FPGAs provide a 
good implementation option). The fog node needs to be able to take a 

multitude of sensors and perform sensor fusion, which, in turns, requires 
that the fog node have a variety of physical interfaces for converting legacy 

analog to digital. These interfaces include coax, USB, RS232, audio, PCIe, 
etc., and system interfaces like SPI. If a system can connect directly to an IP 

network, the RA utilizes the software backplane to provide sensor fusion for 

higher-level software to utilize. The reality is that in many implementations 
of open interfaces and protocols, they have slight variations and hence 

require a protocol abstraction layer to effectively utilize them. 
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Network: Each IP-connected camera (and many other sensors) is 

connected to a fog node using Ethernet. In our scenario cameras represent 
the largest population of sensors. We believe that a singular fog node can 

aggregate four to eight camera streams with a 1Gb (camera to node) and 
10/1Gb (fog-to-fog) interconnect. Fog nodes require a minimum of 16 

Ethernet ports to support camera-to-node, node-to-node, and node-to-cloud 
communications. First-level fog nodes may also support multiple non-IP 

protocols for aggregating both IP and non-IP traffic (e.g., BLE, Z-Wave, and 
badge reader information). Time-sensitive networking (TNS)/ deterministic 

communication is supported by the network and the fog node to prioritize 
alerts across a busy or noisy network. 

 
Accelerators: The visual security scenario offers many places to include 

accelerators. As described above, FPGAs may be used to convert the analog 
input into a digital format. In this application, the FPGA may be connected to 

the node using a traditional PCIe interface. Accelerators also play a role 

when performing visual recognition (face, object, etc.). AlexNet, GoogleNet, 
TensorFlow, and other neural networks can be used to accelerate a matching 

an image with a threat. This is usually called inference scoring based upon a 
given trained model. The recommended interface to the node in this 

example is the same for the analog-to-digital format (most likely PCIe). This 
enables future upgrade of FPGAs as cost and technology changes over time.  

 
Compute: As a fog node is installed, higher-level software needs to 

understand the capabilities by which it processes the data generated by all 
connected sensors and cameras. Compression can also be added to the 

cameras to reduce the general-purpose computation requirements at the 
camera. The next level in the hierarchy would require higher processing to 

perform video analytics using general purpose compute resources or 
accelerators. In our scenario, it is recommended that most of the compute 

be performed in the fog node and not necessarily on the camera.  

 
Storage: For a given camera feed, a fog computing design should capture 

24 hours of rolling data. This requires ~1TB of localized storage for each 
camera feed. The interface to these devices is either SATA or PCIe; the 

medium is either flash-based or spinning disk. In one topology, you can see 
how a single fog node can act as the storage for approximately eight camera 

feeds. This is a traditional Network Video Recorder (NVR) function.  
 

In some implementations, storage will be resident on the camera. However, 
we believe it is more optimal for the airport visual security scenario to 

configure the storage on the hierarchy of fog nodes. This will mean reduced 
camera cost and combining NVR functions with the video analytics 
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capabilities in the same fog node. However, this will increase the compute 

capability requirements at the next level in the hierarchy.  
 

Management (OOB): If the fog node has updateable firmware and 
software, the design can specify remote updates. This is part of the 

serviceability requirements of the RAS pillar. The RA also requires that the 
node implement a mechanism by which a management entity can ascertain 

the health of the overall node (minimally, a healthy or failed state). 
Traditionally, these notifications are accessible via I2C or SMBus interfaces 

and routed to a management controller. This function can also be made 
available to an in-band interface to the operating system. This allows higher-

level software to interface with the management subsystem. The RA 
recommends that any component that can be field repaired or removed 

should have a health indication which can be accessed via this interface. 
 

Security: Nodes must have an immutable hardware-based root of trust for 

verification. This is to ensure that agents capable of communicating in the 
airport are operating from good firmware. The RA also recommends a 

hardware-based root of trust for measurement to provide attestation for the 
software and firmware on the node. This can be supported by a TPM or 

firmware TPM providing it does not impact the overall hardware-based root 
of trust. 

 

7.1.2.2 System View for Visual Security 

This section describes how the components of the fog system view interact 
to support this end-to-end use case. 

 

System View Hardware Virtualization: The hardware of the hierarchy of 
fog nodes used in the visual security example should support virtualization 
techniques. Applications should also avoid being dependent upon which level 
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of the hierarchy their various processes are hosted on. If one fog node in the 

network hierarchy is overloaded or down, the system level orchestration will 
move its responsibilities to adjacent nodes in the same level or adjacent 

levels. Processing, accelerators, storage and networking functions should all 
be virtualized to maximize the efficiency and flexibility of the fog system. 

Virtualization may also incorporate aspects of containerization, depending 
upon the software layers that run on the hardware. 

System View Management: The sophistication of the management system 
must be balanced with the simplicity of usage. The RA addresses a network-
level, end-to-end view of installation, configuration, operations, monitoring, 

troubleshooting, repair, growth and decommissioning of all elements of the 

system. System-level node management must be as autonomous as possible 
to minimize complexity of nodes that a given fog infrastructure can handle. 

By doing this we can increase the overall scalability of the solution.  

Additional management includes a higher-level hardware manager that is 
responsible for all system management. The management system monitors 

the health of all cameras, storage and other hardware assets. This 
management interfaces with the software backplane to satisfy the overall 

systems management. 

System View Security: At the system level, all the fog nodes in the 

hierarchy must cooperate to ensure the network remains secure. This 
includes: 

 Nodes in higher levels of the hierarchy should monitor the functions of 
the lower level nodes to ensure no ongoing or emergent security threats 
exist.  

 Peer-level nodes on the same hierarchy level should monitor their 

neighbors to detect security threats.  
 All node-to-thing and node-to-node communications links should be 

encrypted and monitored for suspicious traffic.  
 Physical security, including tampering, must also be monitored.  

 If a system is tampered with, the management subsystem must be 
notified so that appropriate security measures can be executed.  

 Communication pathways between nodes must be encrypted. 
 Visual security scenarios also include capture of personally identifiable 

information (PII), so any data captures must be encrypted while at rest. 
This includes end-to-end network security.  

System View Network: The network links that interconnect the nodes in 
the visual security architecture transport multiple types of traffic.  
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 At the lowest level is the interconnection of adjacent near-edge fog 

nodes. These are typically direct point-to-point Ethernet links, 
operating at 1 or 10Gbs. They link together the composite picture of 

the fused sensor readings across all nodes. For example, stitching 
together all camera images on a given fog node with a subset of the 

images from selected cameras on adjacent fog nodes.  
 Another type of interconnect is between each near-edge fog node and 

the second level fog node that serves it. These links usually carry 
higher level messages and analytics data that has been distilled by the 

near-edge fog nodes.  
 Another interconnect type is between the second and third level fog 

nodes. The third level fog nodes are master controllers for the entire 
visual security implementation. Redundant links are provided for load 

balancing and fault tolerance. These links can carry significant traffic 
bandwidth, and run for kilometer lengths (usually over fiber). They are 

typically 10 or 100GE IP connections.  

 Finally, there a set of links between the third-level fog nodes and the 
cloud backbone.  

System View Accelerators: The airport visual security scenario studied 
here may include hundreds and thousands of cameras. Each of which will 
produce images that must be carefully analyzed in real-time to detect a 

large number of conditions. The accuracy of the analytics for visual security 
is vital, to avoid swamping the first responders with false alarms, or worse, 

missing some threat scenario that should generate an alarm. Computation 
accelerators make these intense computations fast and energy efficient. 

Some combination of accelerators (such as FPGAs) at the near-edge fog 

nodes, and even larger farms of accelerators at the second and third level of 
the fog hierarchy should be used in the design. Accelerators at the third level 

may be used in image training (facial recognition), while accelerators in first 
level fog nodes would be used for inference on a trained model. 

System View Compute: General-purpose computation is vital at all levels 
of the system view. These compute resources will typically be multi-core 
processors, sometimes configured as multi-socket servers at higher levels in 

the hierarchy. Significant memory (from tens to hundreds of GB) are 
required on each fog node to avoid performance bottlenecks in video-

intensive applications. System-level compute resources are required for 

things like: 

 Executing tasks (such as control algorithms and user interfaces) that 
can’t be more efficiently run on accelerators or require high single 

thread performance 
 Managing the networking capabilities of the fog system  
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 Incorporating license plate recognition scenarios. 

 The following are usually offloaded to accelerators in our example, but 
are kept here for reference: 

o Facial recognition. 
o People counting 

o Threat detection 

System View Storage: Storage will be required at all levels of the fog 
hierarchy. During the normal operation of the system, some visual data will 

be transmitted from the lower levels of the hierarchy to upper levels and 
eventually to the cloud.  

The storage on the near edge fog nodes should be sized to keep 
approximately 24 hours of full-resolution video online locally. For a typical 

fog node with about eight 4K resolution cameras, assuming a compressed 
data rate of 10Mb/s per camera, this requires just under one terabyte of 

storage. Note: data from the non-camera sensors on the fog nodes does not 
contribute significantly to the storage requirement. This storage may be 

implemented in many different ways (there are NVR solutions that address 
this capture requirement). However, storage is finite and the RA balances 

the need to retain older data while addressing near term concerns. In these 
cases, we believe it is acceptable to have a mechanism to reclaim older 

storage for new purposes providing the user explicitly opts in for this 

behavior. 

Before old data is overwritten on each near edge fog node, the 
recommendation is to convert it to a lower resolution (e.g., 720P or 480P) 

and forwarding the data to the second level fog nodes. The second level fog 
nodes accept these down-sampled streams from all the near-edge fog nodes 

they support, and store it for 30 days (in this scenario). This may require 
approximately 20TB of storage (assuming down-sampling of all video 

streams to 1Mb/s), requiring the second level fog nodes to have significantly 
larger storage arrays, perhaps using rotating disks and RAID array 

techniques. The third-level fog nodes are basically big servers, and will 

probably require big data style storage strategies. The benefits of keeping 
this older data in the fog is that we can reduce cloud transmission costs. If 

we do decide to transmit the down-sampled data, the cost of transport is 
less than if we had to send up the 4K or 1080P image. As described earlier, 

“data at rest” on the storage device should be encrypted to protect against 
physical theft and compromise of PII (Personally Identifiable Information). 

System View Hardware Platform Infrastructure: The hardware platform 
infrastructure has a common set of infrastructure components—including 
chassis, backplane, power, cooling operating system and management—into 
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which hardware and software modules are plugged to customize the function 

of specific fog nodes. The same infrastructure elements can then be used to 
produce lightly populated nodes without significant computational, 

networking or storage requirements. The same elements could also be used 
in fully-equipped fog nodes (perhaps higher in the hierarchy supporting 

greater application demands). 

System View Protocol Abstraction Layer: Protocol abstraction permits 
the fog network to operate independently of the specific protocols used in 

sensors and actuators or in the cloud. Adaptation logic (both hardware and 
software) converts native protocols used outside the fog network to internal 

standard protocols, storage formats and data abstraction models within the 

fog hierarchy. This abstraction is one of the reasons that fog computing can 
easily support the diversity required for this end-to-end airport visual 

security scenario.  

System View Sensors, Actuators and Control: As described in the 
section on sensors, actuators and control above, there is a very rich set of 

sensors and actuators involved in the airport visual security scenario. Using 
sensor fusion techniques, the fog hierarchy will assemble the inputs from 

many sensors into a cohesive view of a threat situation at the airport. 
Equally important, fog computing provides the low latency required for swift 

response. Latency is also described under Performance.  

System View Performance: Low latency is a key attribute of fog 
computing, as delayed detection and analysis of a threat is unacceptable. To 
achieve this low latency, the analytics algorithms have significant 

performance requirements, related to factors like accuracy, object database 
size, CPU utilization, energy efficiency, etc.  

System View Scale: The airport depicted in our example is of moderate 
size, with 24 gates. A fog network will scale to support changing airport 

requirements. For example: 

 The same fog network design can be scaled for small airports to hub 
airports. 

 New algorithms will be introduced continually, requiring additional 
compute, accelerator, network and storage capabilities; the fog 

architecture is designed so that most modules can be upgraded 
without requiring the complete replacement of the infrastructure.  

 Using the Fog as a Service (FaaS) model, the fog hierarchy will scale 

to support many different tenants with widely different needs, all on a 
single hierarchical network owned by a single landlord (e.g., airport 

authority).  
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7.1.2.3 Software Infrastructure View for Visual Security  

As shown in figure below, the software of a fog node can be separated into 

three layers. The functions that facilitate the general operation and 
management of the node and its communications with other nodes/systems 

are found in the backplane and node management layers.  

Infrastructure software that does not fulfill any use case on its own, but 
helps to support and facilitate multiple application services is found in the 

application support layer.  

Services that are dependent on infrastructure provided by the other two 

layers fulfill specific use case requirements—such as this visual security 
scenario—and solve domain specific needs are provided in the application 

services layer. 
 

 
 

7.1.3 Application to Airport Visual Security 

Now that we have analyzed different aspects of the architecture that should 
be applied to our solution we will further investigate the requirements and 

assumptions. 
 

The following picture provides a simple view of an airport terminal for our 
scenario. There are entrances, parking structures, security stations, etc. We 
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will refer to the diagram for various usages like License Plate Recognition as 

vehicles enter the airport property. 

 

Figure 34 OpenFog Approach to Visual Security Scenario 

 
We will also deploy multiple fog nodes in each airport and at different levels 

in the hierarchy. There may also be a fog node that is responsible for the 
entire airport and ensuring that interoperability across systems to achieve 

the visual security mandate is in upheld. This is also important so that 
airports can share normalized information. Additionally, each fog node may 

be connected to another level in the hierarchy. These fog nodes work in 
concert to satisfy the requirements of the scenario. 

 
We have several areas to address which we include but are not limited to: 

1. License Plate Recognition as vehicles enter the airport property. 
2. Passenger Arrival/Departure 

a. Parking structures where passengers may exit vehicles and walk 
into the airport facility. 

b. Arrivals is also a location where passengers may walk into the 

airport facility. 
3. Passenger Security screening where the passengers are required to 

provide identification and boarding passes. 
4. Terminals where screened passengers may walk to their gate, shop, 

and eventually leave the airport. 
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When the passengers leave the airport, their information should be made 
available to the airport where the plane is landing. This is represented in the 

following figure with the fog node at a higher level in the hierarchy. 

 

Figure 35 OpenFog realized for Visual Security 

 
The following is a description of the various physical fog nodes that would be 

deployed in our scenario.  
 Fog nodes for License Plate Recognition (LPR): 

o Fog nodes that are surrounding the airport property. In our 
example, these are cameras and security devices. These nodes 

will be thin in nature and report in adjacent fog nodes. We 
estimate that we can service 4 video streams with a singular fog 

node. 
 Fog nodes that are stationed around the parking structure and arrival 

station: 
o These nodes will be comprised of video cameras, and as in the 

LPR case and those cameras are connected to fog nodes for 

visual analytics. 
 Fog nodes that are in the arrivals and departure area (just prior to 

security screening). These are the same as the parking structure. 
 Fog nodes that support the screening process 

o These fog nodes are connected to both passive RFID readers and 
other sensors as well as cameras. 

 Fog nodes that are in the terminal 
o These nodes are connected to cameras and additional sensors. 

 Fog nodes that watch ingress and egress of passengers to planes. 
o These nodes are connected to cameras and additional sensors. 

 Hierarchical fog nodes that support and monitor a grouping of fog 
nodes. 



    

106       
OPFRA001.020817                    © OpenFog Consortium. All rights reserved.  

 

o These fog nodes work on pre-processed data and perform higher 

level functions that support the overall mission of safety and 
security of the airport. 

 
A complete representation of the realized solution will include the 

interconnectedness, security, and software that runs on all the nodes. 

7.1.3.1 Machine Vision for Visual Security 

Fog computing dictates that we process the image at the appropriate level in 
the hierarchy versus sending it to the cloud for analysis. A good mechanism 
to address machine vision requirements for LPR, passenger tracking, people 

counting and other usages in this specific scenario is the use of a 
Convolutional Neural Network (CNN).  

When dealing with CNNs it is common to discuss both training systems and 
classification systems. Training systems are used to build a CNN network 

topology and compute weights against which the image classifications are 
validated. This iteration process of adjusting weights or fine tuning weights 

are continued till we achieve satisfactory level of accuracy in classifying. 
Once we get to this satisfactory level of accuracy (Say a minimum of 98% 

accuracy), we push both the both the topology and the corresponding 
weights to Target or classification system (aka inference or scoring). AlexNet 

which is a well-known CNN for Object recognition and uses a 1.2 million 
training image set to build a 1000 different classifications. This gives an 

estimation of images required for given number of classifications. Higher 
number of images is always better for training. 

 
Figure 36 Training and Classification system for Machine Vision 
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In the LPR case as vehicles are going through the various lanes there will be 

a LPR camera and illumination so that we can capture the license plate 
image and send that information to the fog node. There are multiple options 

for this part. The camera can just capture and send the picture of the vehicle 
and license plate doing more work at the edge of the network or the entire 

video stream can be compressed and sent to the fog node for additional 
analytics. 

 
Figure 37 Airport License Plate Capture 

The LPR fog nodes will be trained on license plate images and once the 
license plate is capture the fog node will perform 1) Localization 2) Character 

segmentation and 3) Optical Character Recognition (OCR) to determine the 
license plate state. 

 

Passenger recognition follows a similar flow of using a training system to 
train a model based upon an image database. The models for passenger and 

vehicles should also be updated frequently based upon new unclassified 
images so that the system will learn over time and increase overall accuracy. 

 
The following diagram show several assumptions in how we will get various 

information shared between different agencies and private entities. While 
this is a simplification of a real scenario it provides the base requirement of 

an optimal system where we can securely share information. 
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Figure 38 Integrated Air Travel Infrastructure - Assumptions 

 

7.1.3.2 Airport Passenger 

To help simplify the flow we will start with a standard case of a passenger 

utilizing the airport for transportation we showed earlier.  
 

The passenger leaves from home and drives to the airport. 
 

There is a fog node associated with each group of cameras that monitors 
vehicles as they come onto the airport. This node is responsible for capturing 

the license plate image, performing video analytics, and capturing the face 

of the driver as they enter the airport property. Fog nodes should also have 
the ability interface directly with RFID readers and other data acquisition 

devices and sensors to provide local, high performance identification of 
people and objects in the vehicle.  

 
 Data security and privacy concerns are addressed throughout the 

network. Camera firmware will be protected by a hardware-based root 

of trust for verification and, optionally, measurement. This ensures 
that processed images are coming from hardware that is operating in a 

known configuration and has not been tampered with.  
 Privacy concerns for visual images stored on the camera requires that 

all saved data is protected from inspection even with physical 

possession. This protection involves strong cryptography on all data 
links and storage repositories used to hold images of people. It should 

be encrypted when at rest and in transport. 
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 If a stolen or suspicious car is detected as it enters airport property 
authorities should be notified to address the situation. 

 Images that cannot be accurately detected should be saved and used 
for retraining. 

 

Passenger parks in the long-term parking garage 
 

At the garage gate entrance where the passenger collects his parking garage 
ticket, the cameras catch the first images and persistent data objects in this 

end-to-end scenario. The following figure illustrates the software applications 
and edge devices that are collecting useful information for this threat 

scenario.  

 

Figure 39 Garage Gate Entrance 

Fog node hardware and software performs video analytics on the camera 
feeds. This involves an image processing pipeline that can be split across 

multiple layers of fog nodes in the hierarchy, or multiple peer nodes to 
balance load. The fog network processes the images, and recognizes certain 

people or objects. For example, if a license plate is detected that falls on a 

“bad vehicle” list, the system can discover this with less than a second 
latency, and use that information to control traffic gates (without significant 

delay). Similarly, the fog network can perform facial recognition, and detect 
people on the no-fly list. Fog is valuable in this case, because the latency is 

low (permitting automatic actuation of turnstiles, etc.), and the local 
processing and storage of the fog nodes can protect passenger privacy. 



    

110       
OPFRA001.020817                    © OpenFog Consortium. All rights reserved.  

 

Objects (like abandoned luggage, for example) can be detected and reacted 

to quickly and securely by the fog network.  
 

 

Figure 40 Central System Analytics 

The image processing pipeline is an example of fog’s distributed analytics 

capabilities, processing the raw images from the cameras in several steps, 
shown in the figure above, and described in detail below. 

 
• Data Filter: Cleans and filters incoming data from a variety of fog 

nodes capturing raw sensor data. 
• Anomaly Detection (machine learning): Detects different types of 

anomaly and asynchronously generates models to provide to the 
risk scoring system, for example the detection of a person on the 

no-fly list, or abandoned luggage 
• Critical Event Processor: Rules engine that monitors incoming 

data flags events of importance (based upon airport policies 
stored in the fog network) and passes them to the risk scoring 

system. 
• Risk Scoring System: Generates a risk score for vehicles, 

passengers, baggage or other entities known to the system. 

Passes high-risk targets to decision support systems. 
• Decision Support System: Receives high-risk targets from the 

risk scoring system; takes actions automatically or raises alerts. 
• Operating actuators (for example, running parking lot gates, 

turnstiles, alarms, etc.).  
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• Training System for edge algorithms as described in the earlier 

section on machine vision. 
 

Entering Arrivals on the way to the Screening Area 
 

At the airport entrance the security system will have to have multiple 
cameras to cover all of the vehicles pulling up and people getting out of cars, 

grabbing bags and entering the airport. This can also be after the passenger 
parks his car and proceeds to the screening area. A key attribute of this 

phase of the process is the tracking of the passenger, and everything he 
brought to the airport from his vehicle, through the airport departure area 

and to baggage check. Notice how the local fog nodes perform sensor fusion 
and data checking/correlation to efficiently implement this step. 

 

 

Figure 41 Terminal Entrance 

The software components for the entrance have many overlaps with the 
parking garage software. However, there are many more instances of the 

capture components as there are many more cameras. Consequently, fog 

node processing is much higher here.  

Also, since we are seeing new vehicles we will re-use the Bad Vehicle 

System. As the passenger proceeds from the garage to the entrance, the 
facial capture and baggage capture components will have received updates 

of his face and baggage data objects through their subscription through the 
software backplane and related data sharing software services. Multiple 

instances of each of these software components will be supported by the 
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software backplane. The agility of fog systems make this sort of re-

use/multiuse possible. 

Sophisticated analytics systems process all the information gathered by the 

fog hierarchy, normalize it, and send it to the next higher level of the 
hierarchy for further processing. These analytics algorithms may employ 

machine learning techniques to continuously adapt to ever-changing 
conditions and threat models. Each level of the hierarchy will combine the 

inputs of cameras and other sensors into a more holistic view of the airport, 
further digest the view into a more “concentrated” form, which is then sent 

to higher levels, where ultimately airport security policies can be applied, 
and any necessary enforcement actions (like denying passage of a vehicle or 

person through a barrier) will be carried out. This is how processed data 
becomes wisdom  

 
After the visual analytics is performed at the node, it can cross check the 

information learned about the driver, car status, and flight status if 

applicable and package this information for more detailed processing at the 
next level. From there, the fog network can determine if the issue requires 

security personnel to be alerted. 
 

Passenger takes bags to airport security checkpoint 
 

Throughout the time when the passenger entered the airport property, a 
database should be created with all of the various information obtained. This 

includes LPR information, car, and images of the passenger and associated 
people. The fog network appends the previously processed images and 

database entry with new surveillance images of the luggage area, facial 
recognition, and other data related to this passenger, such as bag scans, 

updated ticket information, etc. Using this additional information, the fog 
network analytics can predict where the passenger should be going, 

associate any time he is recognized where his bag is not visible, and/or 

associate other risks with his behavior, appearance, etc. This correlation of 
multiple security camera images with the output of various other sensors 

and the database of information about the passenger is an example of fog’s 
advanced sensor fusion capability. 
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Figure 42 Baggage flow 

• Using techniques similar to the operations described for the 

parking garage, the above figure shows some of the software 

components of the fog application that manages the baggage 
check-in process. 

• Vehicle Capture: converts camera images to license info, 
make/model info, parking spot & pair this information with 

unique identifier for the vehicle that came through the garage 
gate. Provides API for other systems to request raw image based 

on id. 
• Facial capture: converts camera images into unique person 

identifier. Provides API for other systems to request raw image 
based on the id.  

• Baggage capture: converts camera images into unique baggage 
identifier. Provides API for other systems to request raw image 

based on the id.  
• Data Fusion: Associates vehicle identifier to parking spot. 

Associates persons to vehicle identifier. Associates baggage 

identifier to person identifier. 
• Checker: attempts to match facial capture data against bad 

passenger images 
• Alerter: responsible for signaling possible issue detected to 

centralized tracking system 
• Bad Passenger System: registry of persons under surveillance by 

authorities and/or people on no-fly lists, on arrest warrants, etc. 



    

114       
OPFRA001.020817                    © OpenFog Consortium. All rights reserved.  

 

Data for this system is held locally and updated on a regular 

basis. 
 

Bags are scanned and checked in 

Cameras will pick up the passenger’s new location. The baggage information 

will be updated and added to his database record entry. This data will be 
published to the various software components in other parts of the system 

for risk analysis.  
 

• The figure shows the baggage screening process. Multiple local 
fog nodes support each security line, their number is scalable 

depending upon compute needs. A mix of sensors including 
cameras, millimeter wave machines, and bomb sensors (sniffers) 

outputs are combined with all the context from previous stages 
of the process to provide a very effective screening process. 

 

Here are some of the Components used in this step. 
• Bomb Sensor: Gathers data from bomb sniffer and passes any 

events to the Data Fusion system for correlation and eventually 
action 

• Facial Capture: Converts camera images into unique person 
identifier. Provides API for other systems to request raw image 

based on the id.  
• Mm Wave Screen: Gathers data from mm Wave Machines, scans 

images for problems, alerts airport screeners for additional 
screening, and passes any events to the Data Fusion system for 

correlation and eventually action. 
• Behavior Monitor: Uses various camera feeds to monitor for bad 

behavior among people waiting in line. Any events are passed to 
the Data Fusion system for correlation with facial and passenger 

data. 
• Baggage Capture: Converts camera images into unique baggage 

identifier. Provides the APIs for other systems to request raw 

images based on the identification.  
• Data Fusion: Associates passengers in line with baggage, 

behavior alerts, MM Wave screen alerts, and proximity to bomb 
sniffer alerts. 

• Checker: Attempts to match facial capture data against bad 
passenger images, and forwards alerts from the sensor systems. 

• Alerter: Responsible for signaling possible issues to centralized 
tracking system. 

• Bad Passenger System: Registry of persons under surveillance 
by authorities and/or people on no-fly lists, on arrest warrants, 
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etc. Data for this system is held locally and updated on a regular 

basis. 
 

Check in through security and proceed to boarding gate 

At this stage the data analytics should have enough information produce 

cognition from the various fog nodes – that is the raw data from the 
cameras and sensors has been converted by the fog network through the 

steps of becoming information, and is now knowledge of the fact that the 
passenger has maintained control of his luggage, and it has been analyzed 

by the security screening policies. The fog network will now be able to 
autonomously determine if there is a credible threat involving the passenger. 

This entire process will take milliseconds and no longer than a few seconds. 
Namely the gate operator must be notified to make a determination to allow 

the passenger to enter the plane, validate that their bags were in his 
possession at all times, and that they are allowed to fly. 

 

The system needs to alert the pilot, or in future scenarios the autonomous 
plan to not take off. This will be solely based upon the entire suite of 

analysis performed in the fog. If the passenger is determined to pose a 
minimal threat, all barriers in his path will open with sub-second latency, 

and he can board his plane without delay. If he is determined to pose a 
threat, several levels of escalation are possible. The system could alert 

airport authorities (either in central security control, or by locating and 
informing the officer physically nearest to Bob). Barriers he may pass 

through like turnstiles or mantraps could hold him. Many other fully 
automated or semi-automatic responses are possible, depending upon the 

treat level detected by the fog, and airport policy. 
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Figure 43 Departure Gate 

o The above figure describes some of the steps the fog network 

will take as Bob makes his journey to the plane. 

 
System Components 

o Facial Capture: Converts camera images into a unique person 
identifier. Provides APIs for other systems to request raw image 

based on the identification.  
o Behavior Monitor: Uses various camera feeds to monitor for bad 

behavior. Any actions that raise flags are passed to the Data 
Fusion for correlation with facial and passenger data. 

o Baggage Capture: Converts camera images into unique baggage 
identifier. Provides APIs for other systems to request raw image 

based on the identification.  
o Tarmac Capture: Uses various camera feeds to monitor the 

aircraft and tarmac for unusual behavior, security breaches, and 
potential aircraft damage. 

o Data Fusion: Associates passengers in gate area (by facial 

recognition) with baggage and behavior alerts. 
o Airline Passenger Manifest System: Provides data about 

passengers that are checked onboard the plane. 
o Airline Passenger Baggage System: Provides data about 

passenger checked baggage. 
o Checker: Final assembly and correlation of data from all 

available system sources.  
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 Passenger appears to match credentials provided and face 

consistently matches with images captured since entering 
the system. 

 Passenger baggage is accounted for and consistently 
matches baggage captured since entering the system. 

 Aircraft does not appear to have been tampered with. 
 No warnings or issues have been detected by other 

systems since the passenger entered the airport space. 
o Export: Responsible for sending all relevant passenger data to 

the destination Central Tracking / Action System 
o Alerter: Responsible for signaling possible issue detected to 

centralized tracking system 
 

Upon arrival, retrieve bags 

 

Security cameras at the arrival airport have data about the passenger. As 

early as the arrival gate, the fog computing network can determine if the 
passenger arrived and has retrieved his baggage.  

 

Figure 44 Arrival Gate 

• The reverse of the arrival process is followed when the passenger 
reaches his destination, and many of the same fog-based processes 

will insure safety during this part of the journey, as shown in the 
above figure.  

 
The process components include: 
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• Facial Capture: Converts camera images into unique person 

identifier. Provides API for other systems to request raw image 
based on the identification.  

• Behavior Monitor: Uses various camera feeds to monitor for 
anomalous behavior. Any events are passed to the Data Fusion 

system for correlation with facial and passenger data. 
• Baggage Capture: Converts camera images into unique baggage 

identifiers. Provides APIs for other systems to request raw image 
based on the identification.  

• Data Fusion: Associates passengers in gate area (by facial 
recognition) with baggage and behavior alerts. 

• Checker: Correlates data from facial capture and baggage 
capture final with incoming (imported) passenger data received 

from the origin airport. Ensures all passengers originally on the 
aircraft exit the aircraft and all expected baggage also exits the 

aircraft. 
• Import: Responsible for receiving all relevant passenger data 

from the origin central tracking / action system into the 

destination central tracking / action system 
• Alerter: Responsible for signaling possible issue detected to 

centralized tracking system 
 

Note that throughout this process, many fog nodes within an airport, and fog 
networks at two different airports must maintain high performance, highly 

secure fog node-fog node communications. This is possible because of the 
highly secure fog infrastructure on all nodes, and the strong cryptography 

applied on all node-node traffic. 
 

Proceed to rental car agency; leaves airport (if authorized) 

 

The data collected required interoperability such that each node can operate 

upon and gain higher-level insights to protect. In many cases this data 
obtained throughout passenger’s journey can be shared with local 

governmental agencies to also track if they can only be in the country for a 
certain amount of time, if he is on parole, etc. Assuming he is not a threat in 

his destination, they are cleared to rent a car, and the rental car company 
can have much higher levels of confidence that the passenger is who he says 

he is, and poses minimal danger, because this information is selectively 
shared between the arriving airport’s fog systems and its car rental 

agencies. 
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 The above scenario about a passenger’s journey serves to illustrate 

some of the key attributes of fog. Fog’s distributed processing 
capabilities and hierarchy support the sophisticated analytics and sensor 

fusion algorithms that analyze their appearance and actions. Fog’s low 
latency permits nearly instantaneous reaction to his actions (for 

example, opening a barrier in milliseconds, where cloud-based 
processing of the same sophistication could take seconds). The highly 

secure nature of the OpenFog implementation insures that the 
passenger’s privacy is maintained and visibility up to higher levels in the 

system hierarchy are constrained. Fog’s reliability insures the system 
will continue operating even if a fog node, inter-node link or the 

connection to the cloud goes down. Fog’s bandwidth efficiency insures 
high bandwidth traffic like video traverses only the most capable links. 

 
This detailed use case as applied to airport visual security scenario is 

intended to illustrate the key benefits of the OpenFog Reference 

Architecture. It is intended to be used as a reference for those exploring 
the application of fog computing to similar concepts and techniques to 

solve similar challenging problems. 
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8 Additional Opportunities 

The OpenFog Consortium collaborates tightly between its academia/research 
and traditional industry members. This allows the Consortium to leverage 

the research and publishing focus of academics with the business 
requirements of industry. Among the additional areas of fog computing 

research are: 

  

 Interactions between fog and cloud computing including dynamic and 
secure shifting and sharing of resources. 

 Security refinements not covered by existing efforts of industry 
associations. 

 Enhancements required for deepened management and orchestration 
of fog computing. 

 Fog based training to support deep learning and machine learning 
without requiring cloud. 

 Fully development the Fog as a Service (FaaS) model.  
 Performance modeling and measurement to ensure that designers and 

architects are achieving the proper QoS for a given implementation 
scenario. 

 Generating rigorous, enumerated requirements to help facilitate higher 
levels of interoperability. 

 Government and societal impacts of a software-defined autonomous 

world of fog computing. 
 Environmental impacts of a more optimized computing environment. 

 Education, research and development for new engineers and scientists 
who will be instrumental in shaping the implementation of the fog 

architecture. This will include software development for fog computing. 
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9 Summary and Next Steps 

 

The OpenFog Reference Architecture (OpenFog RA) is the baseline document 
in developing an open, interoperable architecture for fog computing. It is the 

first step in creating new industry standards to enable interoperability in IoT, 
5G, Artificial Intelligence, Tactile Internet, Virtual Reality and other complex 

data and network intensive applications.  
 

The OpenFog RA represents an industry commitment toward cooperative, 
open and inter-operative fog systems to accelerate advanced deployments in 

smart cities, smart energy, smart transportation, smart healthcare and 
smart manufacturing. Its eight pillars describe requirements to every part of 

the fog supply chain: component manufacturers, system vendors, software 
providers, application developers. The OpenFog Consortium believes that 

without this open architecture, there will be limited interoperability, 
reliability and security, resulting in slower adoption and limited functionality. 

 

The OpenFog Reference Architecture is the first step in creating industry 
standards for fog computing. The OpenFog Consortium will establish detailed 

guidance, interface with standards organizations such as IEEE on 
recommended standards and specify APIs for key interfaces in the reference 

architecture over the next year. Our technical community is working on a 
suite of follow-on specifications, testbeds which prove the architecture, and 

new use cases to enable component-level interoperability. Eventually, this 
work will lead to certification of industry elements and systems, based on 

compliance to the OpenFog Reference Architecture. 
 

For more information on the work of the OpenFog Consortium, please visit 
www.OpenFogConsortium.org.  

 
 

 

 
 

 
 

 
 

 
 

http://www.openfogconsortium.org/
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10 Appendix – Deeper Security Analysis 

This appendix currently contains an initial discussion of several security 
aspects in an OpenFog computing environment. This important discussion 

was placed here for a couple of reasons. First, security is perhaps the largest 
technical concern among critical IoT systems; hence, we wanted to discuss it 

in a special section of the document. Second, the discussion contains highly 
specialized technical details, which, if included in the main body of the 

document, may impact its readability. Thus, we decided to collect the 
materials that are most interested to the security professionals in one place. 

Future versions of the Reference Architecture will also include appendices 
that describe other high-priority cross-cutting perspectives from the archi-

tectural description including performance, manageability, data analytics and 
control with similar levels of detail. 

 Security Aspects 

Security is a critical concern for fog computing. We strongly believe there 
must be a common security baseline to ensure basic interoperability and 

protection. We are also aware that there exists a combination of regional 
and governmental requirements that fog computing must satisfy. The 

following sections describe our preliminary attempt to accommodate 
diversity in approaches while trying to establish a unified practice in the 

security realm of OpenFog Architecture. 

10.1.1 Cryptographic Functions 

Cryptography provides mechanisms to implement security services such as 
confidentiality, integrity, authentication and non-repudiation. Cryptographic 

functions can be implemented in a Platform Security Processor (PSP) to 
protect cryptographic keys and security policies, which then protect other 

objects1. Cryptographic functions can also be used to provide a secure 
execution environment for trusted software, and protect its memory, 

                                    
1 The cryptographic functions used by software executing on OpenFog 

platform may not necessarily be implemented in the Platform Security 
Processor (PSP); they can be implemented independently in software or 

hardware outside of the PSP. 
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storage, and communications. 

The current version of the document describes the initial base list of required 
standard cryptographic algorithms that MUST be available on all OpenFog 
nodes. Requiring this minimum set of algorithms is intended to guarantee 

interoperability among OpenFog nodes. We understand that this initial list is 
limited in its ability to enable global interoperability. Going forward OpenFog 

is making it a priority to develop a more complete list that includes the set 
of standard algorithms of regional standards bodies from, for example, 

Europe, China, Japan, and the US.  

 There are three basic types of cryptographic functions: 

 Symmetric (or Secret-Key) Ciphers for confidentiality protection; 

 Cryptographic Hash Functions for integrity protection and 

authentication of communicating parties2 

 Asymmetric (or Public-Key) Ciphers for generating secret keys, 

establishing long-term security credentials and providing non-
repudiation services. 

The NIST FIPS 140-2 specification [ref-a] defines the security requirements 
for cryptographic modules. This specification covers a list of approved 

cryptographic functions as well as a formal process for validating the 
implementation of these functions in conformance to the specification. The 

OpenFog Reference Architecture adopts a subset of FIPS 140-2 approved 
cryptographic functions as described below in order to guarantees a base 

level of interoperability among its components. The formal validation of the 
cryptographic module (i.e. FIPS 140-2 certification) is left as an option for 

each vendor. Due to the growing importance of FIPS 140-2, vendors are 
encouraged to subject their products to FIPS 140-2 certification. 

The OpenFog cryptographic module MUST support the following FIPS 
approved cryptographic functions at a minimum:  

 Symmetric Key Ciphers3 
o AES (with at least 128-bit keys) 

o Triple-DES 

 Asymmetric Key Ciphers 

                                    
2 Message Authentication Codes (MAC) can be used for authentication, but 

not for non-repudiation. 
3 The Escrowed Encryption Standard (ESS) was withdrawn on December 31, 

2015. 
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o ℤ𝑝, ℤ𝑛
∗  Based: DH, RSA, DSA 

o Elliptic Curve Based: ECDH, ECDSA, ECQV4 

 Cryptographic Hash Functions5 
o SHA-224, SHA-256, SHA-384, SHA-512, SHA-512/224, SHA-

512/256 

 Random Number Generators 

o See Annex C: 

Approved Random Number Generators for FIPS PUB 140-2, 
Security Requirements for Cryptographic Modules  

 Message Authentication Codes 
o CCM, GCM, GMAC6, CMAC, HMAC7 

As defined in Annex A of FIPS 140-2 [ref-b], due to the successful breaking 
of cryptographic algorithms in use or the availability of more powerful 
computing techniques, NIST provides guidance on updating the list of 

approved cryptographic functions. Please refer to NIST “Recommendation for 
Transitioning the Use of Cryptographic Algorithms and Key Lengths” [ref-c] 

for the latest guidance. Subsequent versions of this document will consider a 

transition approach that works for all regional cryptographic algorithms. 

Note: Compliance is not security; some of the FIPS approved cryptographic 
functions may be considered weaker in strength and leave their 

implementation open to potential compromise. In the design of various 
OpenFog components, the cryptographic functions selected for their 

implementation SHOULD be appropriate for their use and in agreement with 
the findings from their stakeholder’s threat assessment.  

10.1.1.1 Crypto Accelerators 

Cryptographic functions can be implemented either in software or in a 

hardware accelerator. While such a hardware accelerator provides an 
important security function for the system, the device itself must also be 

secure. If it is implemented in a virtual environment, it must be 
implemented as a hardware virtualized device so that it can be securely 

accessed by multiple independent processes and/or VMs while maintaining a 

                                    
4 ECQV is used for Implicit Certification. 
5 SHA-1 has been deprecated since 2010. 
6 See NIST 800-38D.  
7 See RFC 2104 and FIPS 198. 
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context specific to each virtual instance and providing access protection for 

each address space that “owns” the virtual interface. 

Many platforms implement a hardware security processor of some kind (e.g., 
TPM, PSP, a Secure Trusted Execution Mode on each core). The PSP 

hardware is inherently trusted by the platform. Among other things, this 
security processor typically responds to requests to perform certain 

operations (e.g., store a record of the measured boot sequence for later 
enquiry, provide secure storage for asymmetric or symmetric keying 

material, provide key access protection, provide encryption and decryption 
of small amounts of secure material, provide an internal True Random 

Number Generator (TRNG), etc.). However, these security processors are 

generally not virtualized so that access from an OS running in a virtual 
machine is not possible – the security processor typically assumes a 

one-to-one relationship with the OS (e.g., the TPM provides only a single 
owner, a single Storage Root Key and password, a single Endorsement Key, 

and a single set of PCRs), so that the security processor functions are only 
available to the hypervisor in a virtual environment. That means that even 

though an OS executing in a virtual machine is capable of utilizing the 
secure storage and cryptographic functions of the security processor, as it 

would running in a bare-metal environment, it is not able to do so. 

The solution to this lies in the implementation of a virtual security processor 

(e.g., vTPM, vPSP) that allow a large number (preferably limited only by 
available resources rather than design) of virtual machines to maintain a 

one-to-one relationship with the virtual Platform Security Processor (vPSP) 
that is allocated to it. A virtual implementation of a vPSP allows both the 

VMs and the PSP to be unaware of the virtualization and they can both look 
and act as they do in a non-virtualized environment. It is necessary to 

implement to full interface capabilities of the PSP in a vPSP as well as 
protected management functions to create and destroy vPSPs. The software 

to implement the vPSP must be integrated into both the hypervisor and the 
guest. In the guest a proxy driver is needed to field the API calls and pass 

them to the hypervisor component where they can be authenticated – i.e., 
can this VM access that object? The proxy in the guest must also return the 

result to the requester. The behavior of the vPSP in the guest must be the 
same as the behavior of the physical PSP when it is presented with a 

request. The requests can be redirected to the physical PSP or emulated, as 

required. The vPSP can protect platform configuration, measurement data 
and provide attestation with regard to the state of the platform 

configuration, data protection for the OS and its applications, and can help 
facilitate remote attestation. The implementation should ensure that 

implementations that work with the current PSP continue to work with the 
vPSP. 
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PSP operations should never occur in the performance path of any software 

implementation. Therefore, the additional latency imposed by a virtual 
implementation should be minimized. 

10.1.1.2 True Random Number Generator (TRNG) 

A TRNG extracts randomness (entropy) from a physical source of some type 
and then uses it to generate random numbers. The physical source is also 

referred to as an entropy source. 

Almost all cryptographic protocols require the generation and use of secret 
values that must be unknown to attackers. For example, random number 

generators are required to generate public/private key pairs for asymmetric 

(public key) algorithms including RSA, DSA, and Diffie-Hellman. Keys for 
symmetric and hybrid cryptosystems are also generated randomly. RNGs are 

used to create challenges, NONCE (salts) values.  

Because security protocols rely on the unpredictability of the keys they use, 
random number generators for cryptographic applications must meet 

stringent requirements. The most important property is that attackers, 
including those who know the RNG design, must not be able to make any 

useful predictions about the RNG outputs.  

The major use for hardware random number generators is data encryption, 

for example to create random cryptographic keys to encrypt data. They are 
a more secure alternative to pseudorandom number generators (PRNGs) -

software programs commonly used in computers to generate "random" 
numbers. PRNGs use a deterministic algorithm to produce numerical 

sequences. Although these pseudorandom sequences pass statistical pattern 
tests for randomness, by knowing the algorithm and the conditions used to 

initialize it, called the "seed", the output can be predicted. Because the 
sequence of numbers produced by a PRNG is predictable, data encrypted 

with pseudorandom numbers is potentially vulnerable to cryptanalysis. 
Hardware true random number generators (TRNGs) produce sequences of 

numbers that are not predictable, and therefore provide the greatest 

security when used to encrypt data. 

Fog systems should implement a TRNG as opposed to a PRNG solution. The 
functionality may be implemented as an ISA extension or via a separate 

accelerator device for example. If it is a device, it should be hardware 
virtualized, to allow for secure access from multiple VMs and/or containers in 

order to preserve secure access. 

https://en.wikipedia.org/wiki/Algorithm
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10.1.1.3 Secure Key Generation, Encryption and Storage  

The PSP may act as a secure vault for certificates, keys and passwords, 

negating the need for costly tokens. 

10.1.2 Node Security Aspect 

 
Figure 45 OpenFog Node Security Architecture 

The previous figure is divided into four horizontal “zones”: First, at the 
bottom, is the hardware component layer (including external devices). A 

number of optional (depending on use case requirements) hardware 
accelerators may be present here. Shown is an encryption device on the SoC 

(it may also be an external device or present as special instructions in the 

processors ISA). Other generic accelerators are also shown here. The system 
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mmu and iommu (which may be a single implementation or split) are also 

located at this level along with the physical cores. The Hardware Root-of-
Trust (HW-RoT) is also a part of the hardware infrastructure and may be 

embedded on-chip or in an external device which provides this function. 

At the next level up is the system Firmware, Option ROMs, and Platform 
NVRAM. The exact nature and existence of these components is platform 

dependent. In order to support the HW-RoT and the extension of the Chain 
of Trust, there must be an immutable firmware implementation resident on 

trusted system ROM that is the first code to execute on the platform after 
power on. 

Above that is the Hypervisor layer. It instantiates and manages the virtual 
device instances, e.g., the vSoC devices shown, and assigns them to the 

virtual machines as directed by the OAM (Operations, Administration, and 
Management) system. It also instantiates other virtual devices representing 

physical external devices (such as the vNICs shown). These virtual devices 
may be entirely supported by hardware that bypasses the hypervisor for 

data (such as a sr-iov compliant device) or as software emulated virtual 
instances (such as a hard disk that is shared). The virtual cores, which may 

or may not be hardware threads if SMT (Simultaneous Multi-Threading) is 
supported by the physical core, allow for the presentation of additional 

virtual cores. 

The final layer is the layer where VMs are instantiated. The physical 
resources are mapped here as virtual resources by the hypervisor. The OS in 
the VM manages the application address spaces which may be instantiated 

as separate application address spaces or as [Linux] containers. 

There are a number of functions which connect the layers and provide 

system services that help create a secure Chain of Trust comprised of 
trusted components. These are represented by the vertical arrows between 

the layers. 

One example is the “Security Engine” that instantiates a Trusted Execution 
Environment and provides services to the hypervisor. The hypervisor, in 

turn, virtualizes that engine, the vSE – virtual Security Engine shown in the 
hypervisor layer with an agent resident in each trusted VM. The other is the 

Trusted Boot firmware and software that verify/measure each subsequent 
load of firmware or software to establish a Chain of Trust that includes the 

VM. 
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The Trusted Boot/Trusted Loader mechanism is meant to ensure that each 

successive code load, be it firmware or software, is trusted allowing for the 
extension of the Chain of Trust. 

Optionally, untrusted software may be instantiated in a VM to create an 
untrusted environment. This configuration may be useful for testing 
untrusted material in an otherwise trusted environment and is secured using 

the isolation and other security mechanisms described previously. 

The RTIC mechanism is described further in 10.1.2.1. It exists in the context 

of the hypervisor and monitors the state of the areas of memory that should 
not be modified during execution.  

Around the perimeter of the abstract fog node system diagram pictured in is 
a red line used to describe Physical Security and anti-tamper boundaries 
implemented by the physical security and anti-tamper mechanisms. We will 

start with that discussion and then proceed to the Root-of-Trust discussion 
and work outward from there. 

10.1.2.1 Run-time Integrity Checking (RTIC) and Introspection 

Secure or measured boot do not ensure that the software that has been 

securely instantiated is either free of bugs, infection or remains 
uncompromised during execution. The intent of Runtime Integrity Checking 

(sometimes called [Hypervisor] Introspection) is to monitor and detect 
changes to code and static data in the image during execution. This is done 

by “understanding” the image construction, i.e., where code and static data 
pages are, by running a set of RTIC specific tools over them before 

execution. The hypervisor hosts the RTIC mechanism. The underlying 
assumption is that the hypervisor itself is trusted. RTIC is only used to check 

VMs. The mechanisms used are mostly passive as the page tables are 
modified to detect writes to pages that should not be written to. The action 

on detecting an unauthorized modification is driven by policy. Typically, the 
VM is terminated. 

There are no existing product implementations of this approach but at least 
one implementation is under development for both the KVM and Xen 

hypervisors. 

The other approach that can address this problem in part is memory 
encryption as discussed previously. This protects the code and data in an 

encrypted “container” (not to be confused with Linux containers) from 

outside attacks. It still may be possible for bugs to be exploited or for 
previously infected images to be compromised. These “containers” are also 
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vulnerable to compromised services when they have to go outside the 

container for services or data. While the code and data (static and dynamic) 
can be protected in this way, none of the code or data or data outside of the 

container(s) are protected. 

When a more mature solution to this problem is available, fog nodes should 
implement an RTIC approach to protect the node from being compromised. 

This does not necessarily prove more useful for nodes in public places than 
those in protected areas as the attacks do not necessarily require physical 

access. 

10.1.2.2 Debug, Performance Monitoring and Profiling Control 

All forms of debug (both hardware and software), performance monitoring, 
and profiling control should be turned off after system deployment. These 

mechanisms provide a way for third parties with either physical access or 
remote access (depending on the mechanism) to provide a technique to 

either defeat security mechanisms in place or to gain insight into the 
behavior of the system that allows for future side-channel attacks. 

If debugging or other monitoring or profiling information is required in the 
field, then there must be mechanisms in place to ensure secure provisioning 
of the authorization for the specific access by legitimate personnel.  

10.1.3 Network Security Aspect 

As a pervasive computing infrastructure deployed between the OT frontend 

devices and the cloud computing data centers, a secure OpenFog platform is 
not merely capable of offering highly-available real-time trusted computing 

services but also well-positioned to implement dynamic multi-tier defense-
in-depth strategies to protect the cyber-physical systems that are critical to 

our daily living. In order to fulfill these dual missions, the OpenFog platform 
must augment the enforcement of node security with the provisioning of 

Network Security and the support of continuous Security Monitoring and 
Management.  
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Figure 46 OpenFog Security Functional Layers and Operational Planes8 

The figure above illustrates such an architecture for providing end-to-end 
security with its two operational planes: Security Provisioning and Security 

Monitoring and Management, and its three functional layers: 
Communications Security, Services Security and Applications Security. This 

architecture complies with ITU-X.805 Recommendation [X.805] and also 
conforms to the Software Defined Networking (SDN) Architecture [ONF/SDN] 

recommended by Open Networking Foundation (ONF). Following subsections 
discuss the functional layers in greater detail. 

10.1.3.1 Communications Security Layer 

This layer implements the following communication security services recom-

mended in [X.800] in all the physical/virtual communication channels among 
all the entities in the Device-Fog-Cloud Computing Hierarchy. 

 Confidentiality 
o Connection and Connectionless Data Confidentiality 

o Traffic Flow Confidentiality 
 Integrity 

o Connection Integrity with Recovery  
o Connectionless Integrity with Detection 

o Anti-replay Protection 
 Authentication 

o Data Origin Authentication for Connectionless Communications 
o Peer Entity Authentication for Connection-based Communications 

o Authenticated Channel Access Control 
 Nonrepudiation (optional) 

o Nonrepudiation of Origins 

o Nonrepudiation of Destination 

                                    
8 The three security layers conform to the reference architecture of both Open Network 

Foundation (ONF) and ITU-X.805 recommendation. 
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The communications occurring in the Device-Fog-Cloud Computing 

continuum can be categorized into three kinds of Secure Communication 
Pathways: 

 Node-to-Cloud Secure Communication Pathways 

 Node-to-Node Secure Communication Pathways 

 Node-to-Device Secure Communication Pathways 

Since the fog nodes often function as the proxies of cloud servers towards 
their associated frontend devices while aggregating and representing these 

frontend devices to the cloud servers, these pathways shall cooperate to 
preserve the interoperability among the frontend devices and the cloud 

servers. The following paragraphs highlight the expected functions and the 

recommended practice of each kind of pathway. 

 
Figure 47 OpenFog Secure Communication Pathways 

10.1.3.2 Node-to-Cloud Secure Communication Pathways 

In order to secure these Communication Pathways, the fog nodes are 
expected to implement all the X.800 communication security services 
(including non-repudiation) for themselves and on behalf of the frontend 

devices they represent. Strong authentication and non-repudiation services 

shall be implemented using security credentials derived from the hardware 
root-of-trust installed in the fog node. Channel Access Control shall be 

enforced according to the Communication Security Policies established 
between the cloud service providers and the fog node managers as a part of 

their service level agreements. All cryptographic operations shall be 
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performed by the crypto accelerators embedded in the fog nodes while the 

cryptographic keys shall be managed as a part of the security monitoring 
and management operation. 

These pathways are also expected to preserve the Internet communication 
protocols and APIs employed by cloud servers to communicate with the 
frontend devices including IoT devices, personal mobile devices, point-of-

sales (POS) terminals, stand-alone computers and servers. Almost all these 
communications are currently conducted as web service transactions via the 

following two protocol suites. 

Applications Transaction Protocols Security Protocols 

Enterprise Apps SOAP over HTTP WSS 

Mobile/Personal Apps RESTful HTTP/COAP TLS/DTLS 

Figure 48 Protocol Suites for Secure Node-to-Node Communications 

10.1.3.3 Node-to-Node Secure Communication Pathways 

A distributed fog computing platform may consist of a hierarchy of fog nodes 
spanning across multiple Internet subnets or administrative domains, and 
yet these fog nodes are expected to coordinate with one another to 

accomplish specific objectives. Inter-node information interchanges based on 
the transaction based client-server computing model and the event based 

publish-subscribe messaging patterns shall both be implemented in order to 
enable direct and timely interactions. The following protocol suites are 

commonly used to implement these paradigms. 

Paradigms Transaction Protocols Security Protocols 

Client-Server SOAP,  

RESTful HTTP/COAP 

WSS, 

TLS/DTLS 

Publish-Subscribe MQTT, AMQP, RTPS TLS/DTLS 

Figure 49 Protocol Suites for Secure Node-to-Node Communications 

Like the node-to-cloud pathways, the node-to-node pathways expect the fog 
nodes as the communication endpoints to implement all the X.800 commu-

nication security services including non-repudiation. Strong authentication 
and non-repudiation services shall be implemented using security credentials 

derived from the hardware root-of-trust installed in the fog nodes. Channel 
Access Control shall be enforced according to the communication security 

policies established among the fog node managers as part of their service 
level agreements. All cryptographic operations shall be performed by the 

crypto accelerators embedded in the fog nodes while the cryptographic keys 
shall be managed by the security monitoring and management operation. 

https://www.w3.org/TR/soap/
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wss
http://coap.technology/
https://tools.ietf.org/html/rfc5246
https://tools.ietf.org/html/rfc6347
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wss
https://tools.ietf.org/html/rfc5246
https://tools.ietf.org/html/rfc6347
http://mqtt.org/
https://en.wikipedia.org/wiki/Advanced_Message_Queuing_Protocol
http://www.omg.org/spec/DDSI-RTPS/
https://tools.ietf.org/html/rfc5246
https://tools.ietf.org/html/rfc6347
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10.1.3.4 Node-to-Device Secure Communication Pathways 

Often function as the proxies of the cloud servers, the fog nodes communi-

cating are expected to preserve the communication protocols and APIs used 
by the frontend devices. Unfortunately, the choices of device communication 

protocols are diversified among different applications and communication 
media. Efforts on protocol convergence among wireless, powerline 

communication and industrial automation have been made through 
adaptation of the Internet (TCP/UDP/IP) protocol suite.  

Most of the X.800 communication security services (perhaps, excluding non-
repudiation) can be implemented over the wired/wireless Ethernets and on 

the Internet network and transport layers by well-known security protocols. 
Among the frontend devices adapted to Internet protocols, strong authen-

tication can be implemented using security credentials issued to the frontend 
devices. Channel Access Control can be enforced according to the com-

munication security policies specified by the fog service providers. All 
cryptographic operations can be performed by the crypto-enabled embedded 

processors in the frontend devices while the cryptographic keys can be 
managed as a part of the security monitoring and management operation. 

However, among many frontend devices that are not Internet savvy and 
often resource-constrained, only limited cryptographic capability such as 

symmetric ciphers using manually installed keys is available. These devices 
must be installed in physically protected environments and connected via 

hardware connections to one or more fog nodes that can provide most of the 
X.800 communication security services. 

As we further investigate fog computing we will continue to expand the 
coverage of node-to-device communications. 

Layers Protocols 

PHY & MAC Layer  WLAN: 802.11 

 WPAN: 802.15 
 PLC: PRIME 

 Automation: CIP 

Wireless Protocol 
Stacks 

 WiFi 
 Bluetooth 

 ZigBee 

Adaptation Layer  WLAN/WPAN: 6LowPAN 
 PLC: PRIME IPv6 SSCS 

 Automation: EtherNet/IP 

https://en.wikipedia.org/wiki/PRIME_(PLC)
https://en.wikipedia.org/wiki/Common_Industrial_Protocol
https://en.wikipedia.org/wiki/6LoWPAN
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Transport/Network 

Layers 

 UDP over IPv6 

 TCP over IPv6 
 uIPv6 Stack 

Application Layer 

(Publish-Subscribe 
Messaging) 

 CoAP 

 MQTT 
 AMQP 

 RTPS 

Routing  RPL 
 PCEP 

 LISP (Cisco) 

Security  802.1AR – Secure Device Identity 
 802.1AE - Media Access Control (MAC) Security 

 802.1X – Port-Based (Authenticated) Media 
Access Control 

 IPsec AH & ESP, Tunnel/Transport Modes 
 (D)TLS – (Datagram) Transport Layer Security 

Figure 50 Protocol Suites for Secure Node-to-Device Communications 

10.1.3.5 Services Security Layer 

This layer offers information security services that are provided traditionally 
by network security appliances such as the following: 

 Deep Packet Inspection (DPI) 

 Application Layer Proxy 

 Lawful Message Intercept 

 Intrusion Detection and Protection Systems (IPS/IDS) 

 System/Network Event and State Monitoring 

 Content Filtering and Parental Control 

It may also offer networking services often bundled with security services 
such as: 

 vRouters 

 WAN Accelerators 

 Network Address Translators (NAT) 

 Content Delivery Servers 

With the increasing use of Software Defined Networking (SDN) implementa-
tions to replace dedicated devices, these “appliances” are increasingly being 

https://en.wikipedia.org/wiki/UIP_(micro_IP)
http://coap.technology/
http://mqtt.org/
https://en.wikipedia.org/wiki/Advanced_Message_Queuing_Protocol
http://www.omg.org/spec/DDSI-RTPS/
http://iot6.eu/rpl
https://en.wikipedia.org/wiki/Path_computation_element
http://lisp.cisco.com/lisp_over.html
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implemented as software solutions in virtual machines and Linux containers. 

Along with other appliances listed above, this category of security appliances 
is generally referred to as Network Function Virtualization (NFV) or 

individually as Virtual Network Functions (VNFs). These VNFs, along with 
other individually packaged services will likely be chained together on a 

Service Function Chain (SFC) and will use Network Service Headers to route 
the packets in the selected Service Function Path (SFP).  

In many cases, it is believed that these Service Functions will be 
implemented in OpenFog systems. The NFV and SFC environment present 
their own set of security issues and include many approaches already 

discussed but also introduce some new challenges discussed below. 

Trusted VNF-to-VNF communication that provides and preserves data 
integrity and confidentiality requires a number of features from the platform 
hardware, firmware, and software. In addition to a chain of trust developed 

from a hardware root of trust, the following features will be required: 

 Secure key provisioning for VNF + CA basis for establishing identity 

o Authentication of the Virtual Network Function (VNFC) 
o Asymmetric crypto 

 Bulk data encryption 

o Symmetric crypto 

 Secure persistent key store 

o For private keys 

 Trusted VNF-to-OAM/MANO communication (Integrity, Confidentiality) 

o Secure software update 
o (Same provisioning as above) 

 Attestation 

o Both parties are in a secure state 

Additional security considerations are introduced in the areas of: 

 Service Overlay: Transport forwarding for SFFs 

o Use packet encryption between SFs/VNFs 

o SFF must Authenticate SF/VNF endpoints 

 Boundaries of SFC-enabled Domain 

o Authenticate Trusted Parties at Boundary: prevent Spoofing, 

DDoS, etc.  

 Classification 
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o Authentication and Authorization of Classification Policy from 

OAM 

 SFC Encapsulation 

o Metadata needs to be authenticated as to origin 
o Selective sharing of sensitive metadata: encrypted or 

transformed 

In addition, the Network Service Header (NSH) provides functionality that 
creates dynamic relationships that may not be authenticated ahead of time 

and may fall to the Service Function Forwarder (SFF) to implement. 

 Any Service Function (SF) or SFF can update the Service Function Path 

(SFP) on the fly. 

 The SFP can list an SF more than once in the SFP. 

In addition:  

 The NSH can contain arbitrary metadata fields (fixed or variable 

length), added by the original classifier or by the SFs or SFFs as the 
SFP is traversed. These are used to communicate context information 

that might be useful to other SFs in the chain. 

This introduces another data Confidentiality and Privacy condition. Since the 

metadata can contain any data that one of the components in the SFP 
deems needed, it is also not clear how to selectively hide (or encrypt) some 

fields from one SF (when the packet may cross a service provider, customer, 
or department boundary where certain information is considered proprietary, 

secret, or sensitive) to others in the chain. The architecture has not yet 
addressed these issues. It is a complex problem involving dynamic, unknown 

parties.  

10.1.4 Data Security Aspect 

There are three general categories in which data resides in a system: 

 In memory during processing 

 On some kind of non-volatile memory 

 In messages sent and received on network interfaces 

10.1.4.1 Data in Use 

Data is resident in the memory system hierarchy (e.g., SRAM, DRAM, 
caches, swap space, etc.) during processing. Some of this data, such as 
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keying material, personal data, company proprietary data and, in some 

cases, even proprietary algorithms, are considered secret and need to be 
protected from being read or altered by unauthorized parties. 

As already discussed, memory management units (e.g., the mmu, iommu, 
smmu) can be used to protect memory from unauthorized access from other 
address spaces (such as VMs) and from devices (either physical or 

logical/virtual). The read/write/no-execute page attribute bits also provide 
restricted access within an address space (this assumes that the OS or 

hypervisor managing the hardware resources is also trusted). The hypervisor 
can add some additional protection by abstracting and virtualizing hardware 

that could directly affect the execution context of another virtual machine. 

Memory that is resident on swap space should also be protected. The 
objective is to prevent unauthorized parties from reading the data in the 
pages on disk by, for example, removing it and reading it on another 

system. This can be done using encryption. Whole disk encryption is one 
approach to providing this functionality at a relatively low overhead. 

Access to memory using external hardware debuggers, such as JTAG, and 
software debuggers should not be enablable in production systems in the 

field. JTAG should always be turned off when leaving a lab or controlled 
environment. When debugging is required, and if permitted, in the field, 

controls must be in place to ensure only an authorized user can use the 
debug interface and that it is disabled for all other access.  

Encrypted Memory 

Memory encryption is used to provide Confidentiality of code and data during 
execution. It is used to protect secrets in memory even when parts of the 

rest of the system have been compromised. Memory encryption is used 
based on the fact that only the CPU package is considered trusted – the 

memory is not. As a side effect, it also prevents an attacker from injecting 
code into a running image as decryption would result in corrupt code and 

program failure. 

Memory encryption schemes typically use symmetric key cryptography 

because of its speed. This functionality requires both additional hardware 
support, including an encryption device resident in the memory management 

subsystem, some operating system support to manage the encryption 
hardware, and a method for managing the keys associated with the 

encrypted memory. 
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Memory encryption is not without a cost. The dynamic decryption/encryption 

of memory as it is fetched into cache and written back to memory from 
cache affects memory response times.  

A complete discussion of memory encryption technology is beyond the scope 
of this paper. However, the technology has clear security advantages for at 
least some classes of data and some applications in a fog computing 

environment. It may be implemented where it is justified by the threat 
analysis. 

10.1.4.2 Data at Rest 

Data at Rest refers to data resident on some non-volatile storage, such as 

hard disk or, SSD, USB thumb drives, CDs, DVDs, etc. Encryption is the 
front-line defense for data at rest. Among other classes of data, it protects 

personally identifiable information (Privacy) and other sensitive data 
(Confidentiality). It limits access to those with the correct keys, preventing 

anyone who doesn’t have the keys from accessing the data. It provides 
protection against unauthorized access to data should the storage media 

become physically compromised in some way. 

It also meets many compliance requirements, removes any concern 
regarding retirement of the storage media and obviates the threat of 

physical compromise of the data against unauthorized access - even if 

someone with physical access walks away with the drive from the fog node, 
they will not have access. 

Encryption by itself is not sufficient - keys, policies and certificates must be 
actively managed in a secure store, making sure that they are not 
compromised and do not fall into the wrong hands. 

A process for monitoring who, what, where, when and how data is accessed 
from within databases, applications, and the OS/file system should be put in 

place. Both access to sensitive information and unauthorized access 
attempts should be monitored. All security events should be logged for 

subsequent forensic analysis and use by the Operations, Administration, and 
Maintenance (OAM) system – e.g., it may use the access data to determine 

if an attack is underway. The policies are specified by the OAM system. 

Secure data at rest mechanisms must be built on a secure chain of trust, 
from power-on through the boot phases, through the instantiation of the 

hypervisor (if used), and through instantiation of the operating system and 

application in the VM (if a virtual environment is used). 
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There are generally three methods of securing and encrypting data at rest: 

Full Disk Encryption 

Full-disk encryption is typically implemented using a hardware-based 
encryption mechanism in the disk firmware although software disk 
encryption implementations also exist. It works by automatically encrypting 

all data written to the disk and automatically decrypting all data read from 

the disk. Both operations depend on having the correct authentication key. 
Without the proper authentication key, even if the hard drive is removed it 

cannot be read by another machine running the same or different software. 
The advantage of full-disk encryption is that it requires no special attention 

on the part of software or the OAM system. If software encryption is used, 
because everything on the hard drive is encrypted, including the operating 

system, the encrypt/decrypt process can increase data access times. Full-
disk encryption will be most useful for fog devices located in publically 

accessible locations (e.g., malls, lamp posts, street corners, roadside, in 
vehicles, etc.). Because one key is used to encrypt the entire hard drive, the 

OAM system should provide an encryption key backup mechanism in case 
the system becomes non-functional for some reason and data retrieval is 

required. Carefully managed secure backups may also be used. 

File System (and Database) Encryption 

File system-level encryption provides a means to use a separate key-based 
access and authentication mechanism to protect specific files on a file or 
directory/folder basis. It is used when individual files stored on disk (or other 

media) need to be protected even from other applications (or users) that 
have access to a fully encrypted disk. In use files are encrypted using 

symmetric File Encryption Key (FEK). The FEK in turn is encrypted using 

owner’s public key. The encrypted FEK is stored with the encrypted file. To 
decrypt the file, the file system first decrypts the embedded FEK using the 

private key that matches the owner’s public key. Then the file is decrypted 
using the FEK. Whole databases, or individual records or fields in records 

may also be encrypted. File system encryption may be used by applications, 
running in the same VM, that consider their data proprietary or for files that 

contain otherwise sensitive or private data. 

File System Access Control Mechanisms 

File system access control mechanisms may be used to restrict access to 

specific files or groups of files by userid or groupid. All modern file systems 
implement file permissions in some form. For discussion purposes, the Linux 
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file system is used here. Most of this type of access control will be similar in 

other systems. 

The Basic File Permissions are applied to Permission Groups using Permission 
Types. This is not intended to be a complete or extensive discussion of file 

system permissions, but is intended for discussion purposes in the 
document. 

Permission Groups - Each file and directory has three user based permission 
groups: 

 owner - The Owner permissions apply only the owner of the file or 
directory. They do not impact the actions of other users. 

 group - The Group permissions apply only to the group that has been 
assigned to the file or directory. They do not affect the actions of other 

users. 

 all users - The All Users permissions apply to all other users on the 

system. This is the permission group that is usually most important. 

Permission Types - Each file or directory has three basic permission types: 

 read - The Read permission refers to a user’s capability to read the 
contents of the file. 

 write - The Write permissions refer to a user’s capability to write or 
modify a file or directory. 

 execute - The Execute permission affects a user’s capability to execute 
a file or view the contents of a directory. 

These mechanisms are important controls within the context of the OS that 
defines userids and groupids. Usually an administrator. Operating from the 
OAM, will specify access permissions when a userid and/or groupid is set up 

for a specific OS file system environment. This may or may not be used in a 

given fog system. It may be important if different applications are running in 
the same OS (VM) context, each with the need to different access to the 

data in a shared file system (e.g., read-only for some, and read-write for the 
data producing application. 

10.1.4.3 Data in Motion 

Data in motion, sometimes known as data in transit, is used here to describe 
packets sent and received on a network interface (including virtual network 

interfaces) from or to a fog node – i.e., information that is moving through a 
network. Encryption should be implemented for all sensitive or private data 
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in motion: using VPNs, SSL and other technologies which can protect data 

from being compromised or seen in plaintext form while in transit. 

There are two ways to use encryption when trying to protect data in motion: 
using an encrypted connection or using an encrypted file. 

An encrypted connection is one in which anything that is sent over a network 
connection is automatically encrypted, regardless of the encryption status of 

the information to be sent. For example, if sending an already encrypted file, 
it will get encrypted again (with a different key) while being sent. 

Another method of ensuing data in motion is secure during transit is to use 
an already encrypted file. Since an encrypted file exists in encrypted form, it 
will always be encrypted, and therefore, protected. 
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11 Glossary 

 

Term Definition Source 

Access Control Means to ensure that access to 

assets is authorized and restricted 
based on business and security 

requirements. 

Note: Access control requires both 
authentication and authorization. 

ISO/IEC 

27000:2014 

Actuators “An actuator is a mechanical device 

for moving or controlling a 
mechanism or system. It takes 

energy, usually transported by air, 

electric current, or liquid, and 
converts that into some kind of 

motion.” 

[Sclater2007] 

Address An address is used for locating and 

accessing – “talking to” – a Device, 
a Resource, or a Service. In some 

cases, the ID and the Address can 
be the same, but conceptually they 

are different. 

IOT-A 

Analytics Synthesis of knowledge from 
information. 

NIST Interagency 
Publication 8401-

1 

Appliance A computer appliance is generally a 

separate and discrete hardware 

device with integrated software, 
specifically designed to provide a 

specific computing resource.  

 

Wikipedia 

Application 

Software 

“Software that provides an 

application service to the user. It is 

specific to an application in the 
multimedia and/or hypermedia 

domain and is composed of 
programs and data”. 

[ETSI- ETR173] 
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Architecture “The fundamental organization of a 

system embodied in its components, 
their relationships to each other, 

and to the environment, and the 
principles guiding its design and 

evolution”. 

[IEEE-1471-

2000] 

Architecture 
Description 

Work product used to express 
architecture. 

[ISO/IEC 
42010:2011] 

Architecture 
Framework 

Conventions, principles and 
practices for the description of 

architectures established within a 
specific domain of application and/or 

community of stakeholders 

ISO/IEC 
42010:2011 

Architecture 
Vision 

”A high-level, aspirational view of 
the target architecture.” 

[TOGAF9] 

Aspiration “Stakeholder Aspirations are 
statements that express the 

expectations and desires of the 
various stakeholders for the services 

that the final [system] 
implementation will provide.” 

[E-FRAME] 

Authentication Authentication is the process of 

verifying a user’s true identity. This 
may involve the use of one or more 

means of proof of identification, also 
known as factors, such as PIN codes 

and smart cards. 

Nexus IoT 

Glossary 

Authorization Granting of rights, which includes 
the granting of access based on 

access rights. 

  

[ISO 7498-
2:1989] 

Autonomy The ability of an intelligent system 
to independently compose and 

select among different courses of 
action to accomplish goals based on 

its knowledge and understanding of 
the world, itself, and the situation. 

IHMC 

Availability Property of being accessible and 
usable upon demand by an 

authorized entity. 

ISO/IEC 
27000:2014 

Business Logic Goal or behavior of a system 
involving Things serving a particular 

IOT-A 
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business purpose. Business Logic 

can define the behavior of a single 
Thing, a group of Things, or a 

complete business process. 

Choreography Type of composition whose elements 

interact in a non-directed fashion 

with each autonomy part knowing 
and following an observable 

predefined pattern of behavior for 
the entire (global) composition.  

ISO/IEC DIS 

18834-1 

Collaboration Type of composition whose elements 
interact in a non-directed fashion, 

each according to their own plans 
and purposes without a predefined 

pattern of behaviour  

ISO/IEC DIS 
18834-1 

Confidentiality Property that information is not 
made available or disclosed to 

unauthorized individuals, entity, or 
processes 

ISO/IEC 
27000:2014 

Cloud Or, "The Cloud," is generally used as 
shorthand for Cloud Computing. The 

name "Cloud" comes from the fluffy 

cloud typically used in Visio-style 
network diagrams to represent a 

connection to the Internet. 

IoT Guide 

Cloud 

Computing 

A general term for the delivery of 

various hosted services over the 
Internet. The "as-a-Service" 

moniker is used for cloud services 
such as Software-as-a-Service, 

Platform-as-a-Service and 

Infrastructure-as-a-Service. The 
back-end for many IoT devices may 

be delivered via the Cloud. 

 IoT Guide 

Communication 

Model 

The communication model aims at 

defining the main communication 
paradigms for connecting elements. 

This model provides a set of 
communication rules to build 

interoperable stacks, together with 
insights about the main interactions 

among the elements of the domain 
model. 

IOT-A 



    

146       
OPFRA001.020817                    © OpenFog Consortium. All rights reserved.  

 

Composition Result of assembling a collection of 

elements for a particular purpose 

ISO/IEC DIS 

18834-1 

Constrained 

Network 

A constrained network is a network 

of devices with restricted capabilities 
regarding storage, computing 

power, and / or transfer rate. 

IOT-A 

Controller Anything that has the capability to 
affect a Physical Entity, like 

changing its state or moving it. 

IOT-A 

Credentials A credential is a record that contains 

the authentication information 

(credentials) required to connect to 
a resource. Most credentials contain 

a user name and password. 

IOT-A 

Cryptography Discipline that embodies principles, 

means, and mechanisms for the 
transformation of data in order to 

hide its information content, prevent 
its undetected modification and/or 

prevent its unauthorized use 

ISO/IEC 18014-

2:2009 

Data-centricity 

 

Scalable, real-
time, dependable, high-

performance and interoperable data 
exchanges between publishers and 

subscribers.  

 

Object 
Management 

Group 
 

 

Device Physical entity embedded inside, or 
attached to, another physical entity 

in its vicinity, with capabilities to 
convey digital information from or to 

that physical entity 

IIC 

Device 
Endpoint 

Endpoint that enables access to a 
device and thus to the related 

physical entity. 

IIC 

Digital Entity Any computational or data element 

of an IT-based system. 

IOT-A 

DIKW Data gathered becomes Information 
when stored and retrievable 

becomes Knowledge. Knowledge 
enables Wisdom for autonomous 

IoT. 

 

Discovery Discovery is a service to find IOT-A 

https://en.wikipedia.org/wiki/Real-time_computing
https://en.wikipedia.org/wiki/Real-time_computing
https://en.wikipedia.org/wiki/Safety-critical
https://en.wikipedia.org/wiki/Many-task_computing
https://en.wikipedia.org/wiki/Many-task_computing
https://en.wikipedia.org/wiki/Interoperable
https://en.wikipedia.org/wiki/Data_exchange
https://en.wikipedia.org/wiki/Data_exchange
https://en.wikipedia.org/wiki/Publish%E2%80%93subscribe_pattern
https://en.wikipedia.org/wiki/Publish%E2%80%93subscribe_pattern
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unknown resources/entities/services 

based on a rough specification of the 
desired result. It may be utilized by 

a human or another service. 
Credentials for authorization are 

considered when executing the 
discovery. 

Edge Gateway Endpoint that provides an entry 

point into enterprise or service 
provider core networks 

IIC 

Element Unit that is indivisible at a given 
level of abstraction and has a clearly 

defined boundary  

Note: An element can be any type of 

entity 

ISO/IEC DIS 
18834-1  

Endpoint One of two components that either 

implements and exposes an 
interface to other components or 

uses the interface of another 
component. 

ISO/IEC 24791-

1:2010 

Enterprise Segment of computing mostly 

focused at traditional IT and 
Industrial IT. 

OpenFog 

Edge 
Computing 

Also referred to as Mesh Computing, 
this concept places applications, 

data and processing at the logical 

extremes of a network rather than 
centralizing them. Placing data and 

data-intensive applications at the 
Edge reduces the volume and 

distance that data must be moved. 

IoT Guide 

Fog Computing Fog computing is a system-level 

horizontal architecture that 
distributes resources and services of 

computing, storage, control and 
networking anywhere along the 

continuum from Cloud to Things, 

thereby accelerating the velocity of 
decision making. Fog-centric 

architecture serves a specific subset 
of business problems that cannot be 

successfully implemented using only 

OpenFog 

Consortium 
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traditional cloud based architectures 

or solely intelligent edge devices. 

Fog Node The physical and logical network 

element that implements fog 
computing services. It is somewhat 

analogous to a server in cloud 

computing. 

OpenFog 

Consortium 

Gateway A Gateway is a forwarding element, 

enabling various local networks to 
be connected. 

  

IOT-A 

 

Global Storage Storage that contains global 

information about many entities of 
interest. Access to the global 

storage is available over the 
internet. 

IOT-A 

Identity Properties of an entity that makes it 

definable and recognizable. 

IOT-A 

Industry 4.0 Refers to the fourth industrial 

revolution, following the first 
(mechanization of production 

through water and steam power), 
second (use of electricity for mass 

production), and third (use of 
electronics and IT for automation). 

Experts believe that the fourth 

revolutionary leap will entail full 
computerization of traditional 

industries. A key element of 
Industry 4.0 is the Smart Factory 

marked by adaptability, resource 
efficiency and ergonomics as well as 

intelligent processes and 
communication. Technological basis 

are cyber-physical systems and the 
Internet of Things. 

Nexus 

Industrial 

Internet 

An Internet of things, machines, 

computers and people, enabling 
intelligent industrial operations 

using advanced data analytics for 
transformational business 

outcomes. 

IIC 
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Information 

Model 

“An information model is a 

representation of concepts, 
relationships, constraints, rules, and 

operations to specify data semantics 
for a chosen domain of discourse. 

The advantage of using an 
information model is that it can 

provide sharable, stable, and 
organized structure of information 

requirements for the domain 
context. 

The information model is an 
abstract representation of entities, 

which can be real objects such as 
devices in a network, or logical, 

such as the entities used in a billing 
system. Typically, the information 

model provides formalism to the 
description of a specific domain 

without constraining how that 
description is mapped to an actual 

implementation. Thus, different 

mappings can be derived from the 
same information model. Such 

mappings are called data models.” 

[AutoI] 

Infrastructure 

Services 

Specific services that are essential 

for any IoT implementation to work 
properly. Such services provide 

support for essential features of the 
IoT. 

IOT-A 

Internet “The Internet is a global system of 

interconnected computer networks 
that use the standard Internet 

protocol suite (TCP/IP) to serve 
billions of users worldwide. It is a 

network of networks that consists of 
millions of private, public, academic, 

business, and government networks 
of local to global scope that are 

linked by a broad array of electronic 
and optical networking technologies. 

The Internet carries a vast array of 

[Wikipedia IN] 
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information resources and services, 

most notably the inter-linked 
hypertext documents of the World 

Wide Web (WWW) and the 
infrastructure to support electronic 

mail. 

Most traditional communications 

media, such as telephone and 
television services, are reshaped or 

redefined using the technologies of 
the Internet, giving rise to services 

such as Voice over Internet Protocol 
(VoIP) and IPTV. Newspaper 

publishing has been reshaped into 
Web sites, blogging, and web feeds. 

The Internet has enabled or 
accelerated the creation of new 

forms of human interactions 
through instant messaging, Internet 

forums, and social networking sites. 

The Internet has no centralized 

governance in either technological 
implementation or policies for 

access and usage; each constituent 
network sets its own standards. 

Only the overreaching definitions of 
the two principal name spaces in 

the Internet, the Internet-protocol 
address space and the domain-

name system, are directed by a 
maintainer organization, the 

Internet Corporation for Assigned 

Names and Numbers (ICANN). The 
technical underpinning and 

standardization of the core protocols 
(IPv4 and IPv6) is an activity of the 

Internet Engineering Task Force 
(IETF), a non-profit organization of 

loosely affiliated international 
participants that anyone may 

associate with by contributing 
technical expertise.” 
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Internet of 

Things (IoT) 

The digital network is soon going to 

connect physical objects (“things”), 
persons, machines, devices and 

processes. It is expected that 50 
Billion devices will be connected to 

the Internet by 2020. Contrary to 
the Internet as we know it, where 

only persons have digital identities, 
the Internet of Things equips 

physical objects with digital 
identities. The objects are 

embedded with software, electronics 

and sensors that allow them to 
communicate with other objects or 

persons in the digital or physical 
world. IoT will transform all 

industries – it is expected that the 
new connectivity will set off 

automation in almost all fields of 
business. Establishing secure 

infrastructures and trustworthy 
identities is vital for the successful 

deployment of this new kind of 
network.  

Nexus 

Interoperability The ability to share information and 

services. The ability of two or more 
systems or components to exchange 

and use information. The ability of 
systems to provide and receive 

services from other systems and to 
use the services so interchanged to 

enable them to operate effectively 
together. 

[TOGAF 9] 

IoT Service Software component enabling 

interaction with resources through a 
well-defined interface. Can be 

orchestrated together with non-IoT 
services (e.g., enterprise services). 

Interaction with the service is done 
via the network. 

IOT-A 

Local Storage Special type of resource that 

contains information about one or 
only a few entities in the vicinity of 

IOT-A 
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a device. 

LTE Long Term Evolution commonly 
used in 4G. 

 

Microservices Microservices can be considered a 

specialization or extension 
of service-oriented 

architectures (SOA) used to 
build distributed software systems. 

As with SOA, services in a 
microservice architecture 

are processes that communicate 
with each other over a network in 

order to fulfill a goal. Also, like SOA, 
these services use technology-

agnostic protocols. The 
microservices' architectural style is 

a first realization of SOA that 

followed the introduction 
of DevOps and is becoming more 

popular for building continuously 
deployed systems. SOA is more 

focused on reusability and 
segregation whereas microservices 

focus on replacing a large 
application(s), with a system that 

can incrementally evolve and is 
easier to manage. 

 

Wikipedia 

Middleware Middleware is 

computer software that provides 
services to software 

applications beyond those available 
from the operating system. It can 

be described as "software glue". 
Middleware makes it easier 

for software developers to 

implement communication 
and input/output, so they can focus 

on the specific purpose of their 
application. 

 

Wikipedia 

Mobile Edge A standard mostly concerned with MEC 

https://en.wikipedia.org/wiki/Service-oriented_architecture
https://en.wikipedia.org/wiki/Service-oriented_architecture
https://en.wikipedia.org/wiki/Distributed_software
https://en.wikipedia.org/wiki/Process_(computing)
https://en.wikipedia.org/wiki/Computer_network
https://en.wikipedia.org/wiki/Communications_protocol
https://en.wikipedia.org/wiki/DevOps
https://en.wikipedia.org/wiki/Continuous_deployment
https://en.wikipedia.org/wiki/Continuous_deployment
https://en.wikipedia.org/wiki/Software
https://en.wikipedia.org/wiki/Software_application
https://en.wikipedia.org/wiki/Software_application
https://en.wikipedia.org/wiki/Operating_system
https://en.wikipedia.org/wiki/Software_developer
https://en.wikipedia.org/wiki/Input/output
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Computing 

(MEC) 

equipping computational resources 

at or near base stations in mobile / 
cellular networks 

Modularity A property of network elements 
where individual capabilities can be 

added or removed without 

substantial impact of other 
components. 

OpenFog 
Consortium 

Multi-tenancy Software Multitenancy refers to a 
software architecture in which a 

single instance of a software 
application runs on a server and 

serves multiple tenants. A tenant is 
a group of users who share a 

common access with specific 
privileges to the software instance. 

With a multitenant architecture, a 

software application is designed to 
provide every tenant a dedicated 

share of the instance including its 
data, configuration, user 

management, tenant individual 
functionality and non-functional 

properties. 

Wikipedia 

Network 

resource 

Resource hosted somewhere in the 

network, e.g., in the cloud. 

IOT-A 

On-device 
Resource 

Resource hosted inside a Device 
and enabling access to the Device 

and thus to the related Physical 
Entity. 

IOT-A 

On-Premises 

Software 

On-premises software (sometimes 

abbreviated as "on-prem") is 
installed and runs on computers on 

the premises (in the building) of the 
person or organization using the 

software, rather than at a remote 
facility such as a server farm or 

cloud. 

 

 

Operational 
Technology  

Operational Technology (OT) is the 
use of computers (or other 

processing devices) to monitor or 

Wikipedia 
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alter the physical state of a system, 

such as the control system for a 
power station or the control 

network for a rail system. The term 
has become established to 

demonstrate the technological and 
functional differences between 

traditional IT systems and Industrial 
Control Systems environment, the 

so-called "IT in the non-carpeted 
areas". 

 

Orchestration Type of composition where one 
particular element is used by the 

composition to oversee and direct 
the other elements. 

Note: the element that directs an 
orchestration is not part of the 

orchestration.  

ISO/IEC DIS 
18834-1 

Private Cloud Private cloud is cloud infrastructure 

operated solely for a single 
organization, whether managed 

internally or by a third-party, and 
hosted either internally or 

externally. 

Wikipedia 

Reference 
Architecture 

A Reference Architecture (RA) is an 
architectural design pattern that 

indicates how an abstract set of 
mechanisms and relationships 

realizes a predetermined set of 
requirements. It captures the 

essence of the architecture of a 
collection of systems. The main 

purpose of a Reference Architecture 
is to provide guidance for the 

development of architectures. One 

or more reference architectures 
may be derived from a common 

reference model, to address 
different purposes/usages to which 

the Reference Model may be 
targeted. 

IOT-A 

https://en.wikipedia.org/wiki/Industrial_control_system
https://en.wikipedia.org/wiki/Industrial_control_system
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Reference 

Model 

A reference model is an abstract 

framework for understanding 
significant relationships among the 

entities of some environment. It 
enables the development of specific 

reference or concrete architectures 
using consistent standards or 

specifications supporting that 
environment. A reference model 

consists of a minimal set of unifying 
concepts, axioms and relationships 

within a particular problem domain, 

and is independent of specific 
standards, technologies, 

implementations, or other concrete 
details. A reference model may be 

used as a basis for education and 
explaining standards to non-

specialists. 

[OASIS-RM] 

Reliability Ability of a system or component to 

perform its required functions under 

stated conditions for a specified 
period of time. 

ISO/IEC 

27040:2015 

Resilience The condition of the system being 
able to avoid, absorb and/or 

manage dynamic adversarial 
conditions while completing 

assigned mission(s), and to 
reconstitute operational capabilities 

after casualties. 

IIC 

Resource Computational element that gives 
access to information about or 

actuation capabilities on a Physical 
Entity. 

IOT-A 

Requirement A quantitative statement of 
business need that must be met by 

a particular architecture or work 

package. 

[TOGAF9] 

Scalability A property of networks where their 

capabilities can grow or shrink 
without undue expense of loss of 

efficiency 

OpenFog 

Consortium 

Sensor A sensor is a special Device that IOT-A 
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perceives certain characteristics of 

the real world and transfers them 
into a digital representation. 

Security The correct term is 'information 
security' and typically information 

security comprises three 

component parts: 

▪ Confidentiality. Assurance that 
information is shared only among 

authorized persons or 
organizations. Breaches of 

confidentiality can occur when data 
is not handled in a manner 

appropriate to safeguard the 
confidentiality of the information 

concerned. Such disclosure can 

take place by word of mouth, by 
printing, copying, e-mailing or 

creating documents and other data 
etc.; 

▪ Integrity. Assurance that the 
information is authentic and 
complete. Ensuring that information 

can be relied upon to be sufficiently 
accurate for its purpose. The term 

'integrity' is used frequently when 

considering information security as 
it represents one of the primary 

indicators of information security 
(or lack of it). The integrity of data 

is not only whether the data is 
'correct', but whether it can be 

trusted and relied upon; 

▪ Availability. Assurance that the 
systems responsible for delivering, 

storing and processing information 

are accessible when needed, by 
those who need them.  

[ISO27001] 

Service Services are the mechanism by 
which needs and capabilities are 

brought together 

[OASIS-RM] 
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Smart Gateway A Gateway is a forwarding element, 

enabling various local networks to 
be connected. A Smart (or 

Intelligent) Gateway additionally 
provides more resources for local 

(edge) computing. These resources 
can include middleware, 

microservices and applications. As 
such, a Smart (or Intelligent) 

Gateway begins to resemble a fog 
Node, as a network element that 

provides some fog computing 

services. Smart Gateways and fog 
Nodes are thus also Appliances. 

OpenFog 

Consortium 

Storage Special type of Resource that stores 
information coming from resources 

and provides information about 
Entities. They may also include 

services to process the information 
stored by the resource. As Storages 

are Resources, they can be 

deployed either on-device or in the 
network. 

IOT-A 

System A collection of components 
organized to accomplish a specific 

function or set of functions. 

[IEEE-1471-2000] 

Thing Generally speaking, any physical 
object. In the term ‘Internet of 

Things’ however, it denotes the 
same concept as a Physical Entity. 

IOT-A 

Unconstrained 
Network 

An unconstrained network is a 
network of devices with no 

restriction on capabilities such as 
storage, computing power, and / or 

transfer rate. 

IOT-A 

View The representation of a related set 
of concerns. A view is what is seen 

from a viewpoint. An architecture 
view may be represented by a 

model to demonstrate to 
stakeholders their areas of interest 

in the architecture. A view does not 
have to be visual or graphical in 

[TOGAF 9] 
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nature. 

Viewpoint A definition of the perspective from 
which a view is taken. It is a 

specification of the conventions for 
constructing and using a view 

(often by means of an appropriate 

schema or template). A view is 
what you see; a viewpoint is where 

you are looking from - the vantage 
point or perspective that 

determines what you see. 

[TOGAF 9] 

Virtual Entity Computational or data element 

representing a Physical Entity. 
Virtual Entities can be either Active 

or Passive Digital Entities. 

IOT-A 

Wireless 
communication 

technologies 

Wireless communication is the 
transfer of information over a 

distance without the use of 
enhanced electrical conductors or 

"wires". The distances involved may 
be short (a few meters as in 

television remote control) or long 
(thousands or millions of kilometers 

for radio communications). When 
the context is clear, the term is 

often shortened to "wireless". 

Wireless communication is 
generally considered to be a branch 

of telecommunications. 

[Wikipedia WI] 

Wire line 

communication 
technologies 

A term associated with a network or 

terminal that uses metallic wire 
conductors (and/or optical fibers) 

for telecommunications. 

[setzer-

messtechnik2010] 

Wireless 
Sensors and 

Actuators 
Network 

Wireless sensor and actuator 
networks (WSANs) are networks of 

nodes that sense and, potentially, 
control their environment. They 

communicate the information 
through wireless links enabling 

interaction between people or 
computers and the surrounding 

environment. 

[OECD2009] 
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