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INTRODUCTION

Fnding the odbecausé behind certain

business oroperations events has always
been a key partof any engineering,
maintenance2 NJ 2 LISNJ G A 2y a

AY Rdza G NR I f
compressor failethecauseX €
tank ran dry becaus& € I NB
phrases in maintenance and operations
departments in industrial businesses.

CAYRAY3I GKS aoSOFdase oRERAGNEYIETE

experienced engineers that can interpret
event, contextual and temporal data to
deduce the likelihood ofspecific factors
causing others in either a negative or
positive way.

Knowing the real root causesf events is
critical to resoling problems rather than
continuously dealing with the symptoms. It
resulted in popular, formalized approaches
4dzOK | & dawz228 2Ndz&abk!
generally known. The challenge is that there
are often multiple causal factors for these
events YR FAYRAYy3I GKS
may not always be possible. Understanding
other causal factors that may influence the
outcome of industrialprocesses and the
behavior of equipment need to be
considered.

Au Sable in collaboration with XMPro
developed an algorithmic, artificial
intelligenced A SRX I LILINE | OK
/I dza | t O YrEA) énlinddstidl loT
applications. This article demstrates:

1 Itis possible to performétiableCausal

Analytics using industrial 0T data and
Artificial IntelligencgAl)to determine

causality of business and operational
events such as equipment failure or
operational issues

1 How Reliable Causahalytics provies
data-driven decision support for

Y y I trdtqmaly Reat 5 Caysg  Analysis
0 desh WBt&ge &4 S & © aparearhgs

2N aliKS
o2Y

Y"ﬁzdfhgl“gpﬁroachto embed this causal
%alytics methodology in 10T Process
Management software to be able to

erfarm this in a repeatable, and . _
NBft ASa

rCA is the result ofmany years of research
and application of causal analytics in real
world scenarios. Through thisAu Sable
developed rCA that enables cause and effect
relationships to be identified from sensor
driven data and made known to the analyst
(e.g. wear on part H05 has causally
impacted the performance of device #65
with a causal cqefficient of 0.86), as well as

: %o?réla%o% ?‘e@tﬁ)nships in the data.

This means:

2 yﬁ? theO(ri's\.l%Eof2 m%king(%alilsgzgegs‘cions about

what were, or will be predictively, the
causal drivers of an effect is reduced,
and

1 the potential for costly or disastrous
mistakess thereby reduced

This article provides background on
tradgiondl RootS Calide 6Ahes and the

evolution of Causal Analytics. It
demonstrates how to automate the

analytics to scale with an loT Process
Management platform and how it is applied
in an industrial application. It provides a
practical example of Reliable Causal
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Analytics (rCA applied to a floating
production storage and offloading (FPSO)
vessefor an Oil & Gas company

Crude oil, gas and water from the reservoir
are separated on board the FPSO. Oil is
stored on the facility in six pairs of tanks,
before export to tradingtankers. Thevessel

is designed to store 1.4 million barrels of oll
and processs approximately 170,000
barrels of oil per day (bopd).

Example Floating Production Storage and Offloading Vessel

ldz {Fo6fSQa NJ!
defense and ati-terrorism applications for
many years. The solution described in this
article is the combination of advanced loT
Process Management software from XMPro
and the rCA Al software from Au Sable.

ROOTCAUSEANALYSISASEDN
CORRELATIONOESI? WORKIN
THEOT ERA

Industrial RCAackground

Formal Root Cause Analysis for industrial
applications started with the Total Quality
Management (TQM)movement advocated

by Deming in Japan in the lai®y n Q& | y R
earlyl9dpn Qa &

Paul Wilson et &ldescribed the root case

analysis process for Quality Management in
RSGFEAT RdzZNAYy3I GKS ¢va S

analysis is a method of problesolving used
for identifying the rootcauses of faults or
problems A factor is considered a root cause
if removal thereof from the proble-fault-
sequence prevents the final undesirable
outcome from recurring; whereas a causal
factor is one that affects an event's outcome
but is not a root cause. Though removing a
causal factor can benefit an outcome, it does

KIa 7 dy ORVLYEBUTR)e WHAWE 5 35y 08

Even though root cause analysis formally
originated in TQM, it finds many applications
in industrial environment$:

1 Safetybased Root Cause Analysis
arose from the fields of accident
analysis and occupational safety and
health.

1Floating prodiction storage and offloadinittps://en.wikipedia.org/wiki/Floating_production_storage_and_offloading

2 http://asq.org/learn-about-quality/root-causeanalysis/overview/rootf-root-cause.html

3 Wilson, Paul F.; Dell, Larry D.; Anderson, Gaylord F. (1888}). Cause Analysis: A Tool for Total Quality Management.
Milwaukee, Wisconsin: ASQ Quality Press. pf78ISBN-873831635.

4 Adapted fromhttps://en.wikipedia.org/wiki/Root cause_analydqidassification)
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1 Productionbased Root Cause Analysis
has roots in the field of quality control
for industrial manufacturing.

1 Processhased Root Cause Analysis, a
follow-on to productionbased RCA,
broadens the scope of RCA to include
business processes.

1 Failurebased Root Cause Anabysi
originates in the practice of failure
analysis as employed in engineering
and maintenance.

1 Systemsbased Root Cause Analysis
has emerged as an amalgam of the
preceding schools, incorporating
elements from other fields such as
change management, risk
management and systems analysis.

Root Cause Analysis became popular as an
approach to methodically identify and
correct the root causes of events instead of
addressing symptomatic results of these
events. The objective of root cause analysis
is to prevent protem recurrence. Some
popular root cause analysis techniques
AyOf BRSK&AaA¢ | YR
(Fishbone) diagrams. These techniques rely
on human interpretation of event
information and data and require
experienced practitioners to conduct the
analysis. It is often limited to a few critical
production assets as the manual process is
time-consuming and
distinction between root causes and other
causal factors provides some guidance on
the application of causal analytics in an loT
context for this article. Traditional
techniques focused only on finding the root
causes through manual review. Modern
techniques such asCA described in this
article, combined with loT data and
advances iAl, enable engineers to not only

assess root causes, but also find other causal
factors. These causal factors may not lead to
equipment or process failure but may still
impact equipment or process performance.

Recent advances in cloud computing and Al
provide the necessary infrastructure to
analyze event data for loT and other sources
at massive scale. This means analysts can
have a more expansive view of causal events
rather than a reductionist view where the
scope of an analysis is limited to what a
human can process.

MOTIVATION FORATADRIVEN
RELIABLEAUSAIANALYTICS

There are three main reasons to find a

reliable, datadriven approach to finding

root causes and causal factors for equipment
failure and operational performance in

industrial enviroments:

1 Aging workforce and a large number
of experienced engineers retiring soon

/I dza S ¢ gompleRitf F Sqipmentnaking it

harder to troubleshoot
1 Inaccuracy of Root Cause Analysis

RetiringWorkforce

With a retiring workforce in many industrial
sectors, theexperience needed to conduct

laborious? A f & 2 y (neaningful RCAs is decreasing. As much of

the traditional approaches rely on
observational analysis, the number of
experienced engineers that can provide
reliable analysis is fast reducing.

According to a January 2017 assessii®n
the US Department of Energy, 25% of US
employees in electric and natural gas utilities
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will be realy to retire within 5 yeas The US
Department of Labor also estimates that the
average age of indust employees is now
over 50 andup to half of the arrent energy
industry workforce will retire within 8.0
years®

for telecommunication devices that states
cthe effect of a telecommunications
network is proportional to the square of the
number of connected users of the system
(n?)é @

aSiOlItFSQa fdideonghics | f a2
Manual RCA requirethe combination of a and business management, provides some
rigorous methodology, fault analysis  quantification of the impact of the increasing
technology and experience to evaluate the  complexity of equipment to troubleshoot
possible causes of business events such as potential causal relationships between
equipment failure, quality problems or operational events.
safety incidents. Much of the xpertise .
needed will be lost with the retiring Inaccuracy of Root Cause Analysis
workforce. A datadriven, algorithmic Root Cause Analysisamed popularity in
approach provides a viable replacement for  industrial and other sectors such as
the experience of people to determine  healthcare. One of the main challenges that
causal relationships between business emerged centers around the fact that it
events. requires facilitation and analysis by people
Complexity oflndustrial Equipment yvho car_l process only limited ampunts of

information. People are alsausceptible to
As  industrial equipment  becomes opinions and organizational influences such
increasingly sophistated 7 and more as politics. Peerally et al describe the
complex, the ability to perform diagnostics  problem with Rot Cause Analysis with these
becomes increasingly more difficult. As 8 mainchallenges:
equipment becomes more complex and 1 The unhealthy quest faithe¢ root
sophisticated the number or combinations cause
and permutations of potential causal factors 1 Questionable quality of RCA
for certain events increases expantally. It investigations
Fft26a | aArYAfl NIBLI G G%Roticdhigacka SOt F5Qa 1 ¢
51 d{ & S5SLI NIYSYyGd 2F 9ySNHeE:Z vdzd RNByyAlf 9ySNHE wS@GASs ovowo

bliAz2yQa 9f SOGNAOAGE { &aiSyYhe 215tTenturyt Ghidgirg Weelst aBdONeMIDipartiinities? 2 NJ F 2 |
January 2017. Retrieved fronttps://energy.gov/epsa/initiatives/quadrennisgnergyreview-ger

Iy R

6 U.S. Department of Lo 2 NJ 9 YLX 28 VYSyi
https://www.doleta.gov/brg/indprof/energy profile.cfm

¢ NI AYAyYy3Ic 9yRINB/RAGET NIvE & R S S R/

7 Challenges To Complex Equipment Manufemtst Managing Complexity, Delivering Flexibility, and Providing Optimal Service
http://www.oracle.com/us/solutions/046249.pdf

8 Metcalfe's lawhttps://en.wikipedia.org/wiki/Metcalfe%27s law

9 The problem with root cause analysitip:/qualitysafety.bmj.com/content/26/5/417

[1IC Journal of Innovation -5-


https://energy.gov/epsa/initiatives/quadrennial-energy-review-qer
https://www.doleta.gov/brg/indprof/energy_profile.cfm
http://www.oracle.com/us/solutions/046249.pdf
https://en.wikipedia.org/wiki/Metcalfe%27s_law
http://qualitysafety.bmj.com/content/26/5/417

Causal Analytics in ll@TAl That Knows What Causes What, and When

1 Poorly designed or implemented risk
controls

1 Poorly functioning feedback loops

1 Disaggregated analysis focused on
single organizations and incidents

1 Confusion about blame

1 The problem of many hands

Many of these are as a result of the
subjective n&ure of the people doing
analysis and can be addressed with a more

objective, datadriven approach. People
Oy Qi LINRPOS&aa |ff
of event and contextual information.

Modern advances in data, stream and event
processing address sonwd that challenge

and Al provides a means to make sense of

the data at scale. It removes the reliance on
the subjective nature of human analysis and
opens the opportunity to analyze fabased
information at scale to derive insights.

The unhealthy quest2fNJ & (0 K S €
further describes a challenge that can be
better addressed with an algorithmic

approach to Root Cause Analysis. Peerally
TAN

adrdsSa dGKFG aaGKS
Cause Analysis is its name. By implying
even inadvertently that a single oot cause
(or a small number of causes) can be found,
0KS GSNXY WNER2I
Ftl SR NBRdzOUOA2YAal
An algorithmic approach often provides
more potential causal factors, their

i KS

relationship to each other and the strength
(causal codicient) of the relationships. It
offers additional insightsinto events and
often finds causation that may be
counterintuitive to the views of the people
that do it manually. An algorithmapproach
also provides repeatability and scale. It will
analyze he IoT and contextual data in a
consistent way that is independerdf the
person performing the analysis.

USINSAUSALANALYTIESS 19
PERFORMLGORITHMIBOOT
CAUSEANALYSIS

az2dzNDSa

Ho™e [ & prgrgted

Correlation isNot Causation

In this era of big datait is commonly said
that data analytics is a prime driver of value
to enterprised®. This is true, but only if the
analytics performed across the data are well

N2 gréundédl mizih8dologically and perform

well and efficiently to derive the value.

Big data creates big and complex data

dryted yappyever, b o
It is not accompanied by the best available
analytics to enable the most valuable,
accurate and reliable decisions to oc€ur

OF dza & ;)?”PZS% :ﬁaii A dnereaging fé‘“dr%“g”t I
& fordhe an: u

Ics coponent in industrial loT
solutions to be fast, reliable and accurate to
identify the problems and opportunities and

10How does business analytics contribute tesimess valuehttps://onlinelibrary.wiley.com/doi/pdf/10.1111/isj.12101

11 The Age of Analytics: Competing in a ddtaven world

https://www.mckinsey.com/~/media/McKinsey/Business%20Functions/McKinsey%2@iss&Dur%20Insights/The%20age%?2

0of%20analytics%20Competing%20in%20a%20data%20driven%20woHild & eof-AnalyticsFultreport.ashx
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ensure that such problems are addressed
correctly and urgently.

Correlation of events and systems isasfta
starting point for problersdving in
AY Rdza G NR I €
y2 0 Ol #&Xormélatignyhélps to point

the way, helps indicate what might be
candidate causative or driving factors for
some particular effect yet keeping in mind
that correlation is simply a measure of
association not causation.

Introductory statistics courses talls that it
is not possible t@rovecausation unless one
conducts an experiment whereby treatment
and control groups are randomized.

This is totally correct but is just not feasible
to conduct an experiment in 99% of real
world situations. Algorithmic methds have

a probabilisticand contributory approacly

& LJZNNBR 2y 0@ oA3
empiricallybased datadriven decisiong, to
answering questions about what caused
what or will. For example, a causal
coefficient of 0.83 of X as a causative
influenee on Y, does not mean that X is
necessarily thasolecause of Y (there may be
multiple causes) nor does dlwayscause Y.

X is identified however as eontributory
cause of Y. Similarly,
contributory cause of lung cancer; it is not

smoking is a

the sole ause, nor does it always cause the
effect.

Correlations can be misleading. Valuable
results and insights are often found, but the

are made mean that risks are inherent and
could lead to mistakenor suboptimal
decsion-making and outcomes.

The chief analytics tool of mostdustrial 10T
analytics vendors is correlation Most
sensordriven data (loT and machine
generated logs) is analyzed using a proven
but older form of statistical methods (even
when operating witlm a machine learning
framework). Correlational methods are the
dominant form of analytics.

Some examples from IoT vendor
publications and websites demonstrate this
approach:
RIG/IAE02 ySSRI I X Ny 3
GKS O2YLI yeQa
reaktime data correlation and, as a
result, quickly react to irregularitiés
2.1 dz SA O6WEKS

L2¢da

Sy @A NB Y Y 8y codielatbriziiethad® gpbliNGhich: dedisens A a

L2¢ 4
Odzaidi2YSH

t 2(

CNI YAaTF2NXYIGA2YQUY XSyl

correlationbased process and
productivity improvements#

12 Correlation does not imply causatiditps://en.wikipedia.org/wiki/Correlation_does_not_imply causation

13 Attaining 10T Value: How To Move from Connecting Things to Capturing Insights
https://www.cisco.com/c/dam/en_us/solutions/trends/iot/docs/ictlata-analyticswhite-paper.PDF

ueKS L2¢Qa

t 2 4 Sy (http/fehFadeidod/dll Y AF2 NXF GA2Y

sa/publications/global/ict_insights/201703141505/focus/201703141643
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3. ThingWorx's capabilities make it
possible for users to correlate data,
RSNA DAY 3T LI2 S NF dz

4.{ ASYSya
statistical relationships to redife
usage, called customer correlatitin

5. Industrial Internet Consortium:
XO02YY2Yy A&dadzsS Ay
correlating data between multiple
sensors and process coaotrstates’

Correlational methods are establisth as
powerful aids to decisiomaking as is
witnessed in the rise of platforms that
provide the capability. Correlations often
vary such that at a given time one entity and
another may be positively reled and at
other times only weakly related or not at all.
There is no faebased causal coefficient that
describes the strength of potential causal
relationships.

The lack of stability in correlations indicates
complexity in the relationships and the

presence of a dynamical system (common in
[loT). This results in variability according to
the system state and nonlinearity in system
behavior. It means that traditional statistical

methods, correlation included, have

limitations for obtaining precise analytics

and improved decision making about
performance in lloT.

The result is that an observed correlation
over time may or may not be coincidental,

F hob/ &He Idkdered correlation (and any
t[aY Xljdzl Y 4hpliel eadsiion) may be the result of one

or more thirdparty variables (idden
confounders), e.g. another variable that

I_m,ztllu(gnceésétvxéloﬂege\t}ts that are seemingly

correlated. An examp?e of this may be ice
cream sales and boating accidents that are
correlated but both are affected by summer
temperatures, and so a causal inference
would be spurious. In this example summer
temperature is causal but one may
incorrectly infer causation that an increase
inice cream sales leads to boating accidents
due to the high correlation factor. More
humorous examples of these erroneous
correlatons can be found atSpurious
Correlations

Mathematicallybased causal analytics
attempts to improve on correlation for
causality identification.

TheEvolutionof Causal Analytics

CAUSALITFORREAEWORLIAPPLICATIONS

It is well accepted that causation cannot be
proven statistically unless one conducts an
experiment with randomization to control

15 A survey of 10T cloud platfornigtps://www.sciencedirect.com/science/article/pii/S2314728816300149

16 Customer Correlation Durability Methodology

https://www.plm.automation.sienens.com/en/products/Ims/engineering/customeaorrelation.shtml

17Industrial Analytics: The Engine Driving the 1loT Revolatips://www.iiconsortium.org/pdf/Industrial_Analytics

the_engine_driving_lloT_revolution_20170321 FINAL.pdf
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for spurious relationship® 1°, which is
simply not practicable in most realorld
situations.Theposition of the authors is that
correlational methods have served well and
are proven to provide useful insights, but are
nonetheless prone to producing spurious
relationships and  hence  mistaken
decisiong??!

As noted earlier, causality research has been
undertaken to develop different
probabilistic methods and approaches for
identifying cause and effect relationships in
nonSELISNRAYSy Gl ¢

Causal analytics evolved over the past few
decades from academic studies to practical
solutions such as rCA. A stumbling block
historically in reaching this goal has been to
devise causal algorithms that produce
reliable and accurate results for commercial
and government application.

ADVANCES INCAUSAL ANALYTICSAND THE
DEVELOPMENOFRELIABLEAURLANALYTIGECA)

In the 1983, mathematical advances by
Judea Peatt from UCLA showed that causal
relationships can be represented from data
in terms of probabilities and led him later to
RSOf I NB aKI G

outstanding work led him to be awarded in
2012 the indd& G NB Qa
Prize the Turing award, for advances in both
machine learning and causality.

Problems remained however, e.g. how to
identify a causal relationship when unknown
delays occur between cause and effect. And,
what are termed hidden confounders, were
difficult to identify and control for. Earlier
the work of Weiner (195§) laid the basis for
several informatiortheoretic measuresof
causality (and for weknown data

2 NJ W2 0 admpidssian Algosithnts)Q R G @

A landmark innovation was that of Clive
Granger?®, awarded a Nobel prize for

developing a test of causality: X is said to
cause Y, if the past values of X contain
information that helps predictuture values

of Y, above and beyond the information
contained in past values ofgraphically:

GO dzal £ AG @ KI a 0SSy

YIGKSYIFGAT SRED ohkKvds YIF GKSYIL GAT F GA

LJS NXK | LJa | tfAGGE S

LINB Y { dzNB =

o dzii t St

18 https://us.sagepub.com/sites/default/files/uprbinaries/14289 BachmanChapter5.pdf

19 http://www.statisticssolutions.com/establishingauseand-effect/

20 https://hbr.org/2015/06/beware-spuriouscorrelations
2L https://en.wikipedia.org/wiki/Spurious_relationship

22 Judea Pealttps://en.wikipedia.org/wiki/Judea_ Pearl

23 Clive Grangehttps://en.wikipedia.org/wiki/Clive_Granger

[1IC Journal of Innovation
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Figurel: Granger causalityest

Researchers extended this framework, e.g.
to allow for analysis of multiple time series
generated by nonlinear models, ftaigging
the cause and effect variables and for causal
graphical models for better handling of
latent variables.

Transfer Entropy?* 2° (TE) is a later
implementation of the principle that causes
must precede and predict their effects. TE
improves on Grangenithat it directly caters
for nonlinear interactions and helps
minimize problems of noisy data. TE is a
modekree and nonparametric measure of
directed information flow from one variable
to another.

24 Transfer Entropwttps://en.wikipedia.org/wiki/Transfer_entropy

The application of TE to empirical analytics
has beersubstantial in areas of biomedicine

and climate science. However, further
developments were needed to help

overcome  shortcomings related to

unreliability and a lack of accuraty Au

{10oftSQa @¢2N] 2y AYLINROJAY
TE, combined with other Au Heae

proprietary algorithms have led to the
development of an algorithmic approach to
causal analytics that can process IoT event
data and provide reliable results. This means
that Causal Analytics can now be applied to
realworld scenarios with nomxperimental
data.

25 Transfer entropy between multivariate time serietps://www.sciencedirect.com/science/article/pii/S10076416305020

26 Progress in Root Cause and Fault Propagation AnalyisisggScale Industrial Processes

https://www.hindawi.com/journals/jcse/2012/478373/

-10-
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These reaWorld applications involve
methods that take into account the
complexity of systems (thereby including
analytics of system machine and log data).
The interdependencies and dimensionality
of many lloT system devices mean that
identifying their behavior (caus$aand
otherwise) can be extremely difficult
depending on the magnitude and nature of
the couplingsOne variable may be found to
be a drver of another, but not aloneThe
multiple influences that have an impact on a
particular variable must be teased quguch
as the timings, statelependencies and
multi-dimensionality of other influences that
AYLI OG Fy WSTFFSOGQ
decrease in pressure or rig@ temperature.
These are identified as part of the rCA
process for lloT.

This approach ha®d to an area of causal
research from a dynamical systems
perspective. A dynamical system is one in
which a function describes the time
dependence of a point in a geometrical
space?’ 222930 A dynamical systems course
at Harvard states that the methods haee
focus on the behavior of systems described
by ordinary differential  equations.

I LILIX A Ol GA2Y I NBI &
multidisciplinary, ranging over areas of
applied science and engineering, including
biology, chemistry, physics, finance, and

27 https://en.wikipedia.org/wiki/Dynamical_system
28 https://en.wikipedia.org/wiki/Dynamical_systems_theory
29 https://mathinsight.org/dynamical_system_idea

30 http://math.huji.ac.il/~mhochman/researctexpo.html

a Xl

industrial aplied mathematics® This is a
fairly recent set of developments and
especially with respect to incorporating Al
and machine learning where these
algorithms can be applied to lloT data at
scale.

Automating rCA in Industrial 10T

Applications

Although the ICA approach can be employed
on an adhoc basis by an analyst, the real
benefits come from automating the rCA Al
analysis as part of an loT process. The rCA
function can be executed based on trigger
events such as data changes or exceptions.
FThe AGAU Sofidesd 8nd  algoditéhfs afe d

embedded in the functions library of the

XMPro 10T Process platform for lloT
applications.
NB RADSNES I YR

31 https://scholar.harvard.edu/siams/am 4 7-nonlineardynamicalsystems
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Figure2: XMPro loT Process Stream for rCA

In this example, event data is ingested from
their Honeywel®  historian and
contextualized with asgedata from their
IBM Maxim@®EAM system. Further context
is provided from opeational data stores.
This information is passed to the rCA Causal
Analytics Al function that creates the causal
coefficient matrix and other outputs
described later in the artiel

This automated, procesBased approach
ensures repeatability, consistency and that it
can be done at scale for a large number of
assets in a process stream. The automated
process can process and analyze much larger
volumes of loT data than human RCA
analysts. In the FPSO example different

analyses are automated at different time
intervals such as daily for high impact
equipment and weekly or monthly for other
areas. This is configurable by the end users
and ad hoc analysis can also be performed.

QUSTOMEREXAMPLERCAIN OIL
ANDGASPROCESSING

Background to theApplication of rCA in Oil
& Gas

The example demonstrates how rCA can
enable an FPSO to optimize production and
productivity as well as predict and avoid
incidents which threaten health, safety,
environment, community and financial

-12-
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outcomes. The initial field study project was
aimed at three key objectives:

EFFICIENOPERATIONSNDMAINTENANCE

This project will drive down the costs of
reduced or lost production caused by
unplanned failures. O#r operational
efficiency gains will be achieved by reducing
the risks of environmental impact caused by
operational failure and the risks to personnel
safety caused by breaches of operational
standards. Furthermore, the costs of asset
maintenance will bereduced and the
capability of diagnosing asset health in
remote and challenging  operating
environments is increased.

SAFETY ANBDCIAILICENSEOOPERATE

Equipment failure and/or an unsafe work
environment can potetially result in harm

to humansor the environment, ultimately
increasing operational risk and impacting an
2NBI yAT I GA2yQa &az2O0OAl ¢t

This solutionwill assist in providing a safe
production environment. In addition,

through to the inbuilt predictive analytics,

further eliminate operational risks which

could impact the social license to operate if
undetected and left uninvestigated and
unaddressed.

BNABLINGFECTIMBOLLABORATION

Traditionally there exists a significant divide
between the operational technology (OT) i
heavy asset sectors like Oil & Gas and the
information technology (IT) arena. Not only
are they typically separated by physical,
geographical and network constraints, they
are also generally isolated philosophically.

The innovative solution and integed
application suite enables interoperability of
data feeds from sensors and devices, with
the associated referential information from
the asset registry and maintenance
framework. It combines data from both IT
and OT and this new information provides
insights that can be shared collaboratively
between OT, IT and Operations. It makes
new levels of operational excellence,
collaboration and sustained productivity
improvements possible.

The project mirrored an upstream oil and gas
process flow including valugdded services
at each stage of the supply chain leveraging
reaktime loT big data, machine learning and
artificial intelligence.

Going beyond the obvious elements that
cause an interruption to production, rCA is
used to find root causes and inter
depencency which may be overlooked or
nof reghZeq Wity cujrent tachigiRgy. (M ais
will enablethe operations team onboard the
FPSO to keep it in productiowithout
interruption for long periods and, when
down, to be repaired and brought estream
faster.

Most importantly, these improvements
reduce the risk of events that impact the
safety of all personnel on theFPSOand
protect the environment on the vessel and in
the geographic vicinity.

ProjectBackground

The FPSO plant had experienced occasional
periods of operational instability. These
were largely unexplained, yet some
significant and costly problem®sulted It
was particularly challenging to identify the

[1IC Journal of Innovation -13-



Causal Analytics in ll@TAl That Knows What Causes What, and When

actual cause(s) of the problems. Routine
correlational methods of analysis, such as
traditional RCA, had been applied but
provided the operators with only limited

assistance.

The project was conducted in 2 phases. In
the initial phase the FPSO operator wanted
to validate thealgorithms through an initial
manual analysis beforeautomating the
process in phase 2.

| dz { I r6As$sem used sensairiven
and machine data covering a defined period
where these events occurred as the basis for
the analysis. TheCA analysis discovered
causeeffect relationships that were not
previously known by the agineers and that
helped to identify and address the real root
causes of the problem. The results of fGA
analysisin phase lprovided new insights
into causal relationships that were
previously not considered in the human
analysis process. This is afrgficant value
and benefit to the operations and
engineering teams of th®il & Gas customer
operating the FPS@nd it provided the
support to automate the process in phase 2.

The example data shown is that of the phase
1 analysis that provided the insity and
confidence in the output to support the
decision to automate the process for a larger
data set and additional equipment.

rCA on the FPSO

During phase 1 the analysis wasonk
manudly to validate the model and establish
the workflow for the automatd steps in
phase 2.

The analysiapproach in phase @onsiss of
three main process steps:

1 Ingest data: Redlme feeds of
operational data are collected from
intelligent equipment (e.g.
submersible pumpstc.) and from
the Honeywell Historian through
XMRNE Q a
connectors that stream the data to
the analysis step;

1 Perform analysis: The streaming data
from the previous step is passed to
the rCA algorithms in the XMProAC
Functions connector where the
analysis is performed; and

1 XMPro A&tion Agents provide reports
and actions on the results of the
analysis that identify real causesdan
not just symptomf production
outages.

Data from sensors at locations across the
plant operations were mapped to locations
on a procesdlow diagram (D) and are
shown ased circles irHgure3. This provides

a familiar visual reference for the engineers
of the physical process and the data from the
different sources.
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Figure3: Locations of sensors (red circles) on a process diagram ofgplargtions

The FPSOplant engineers provided one
Y2y (i KQ& Rinidute interiials omS
sensors at the above locations. The rCA Al
algorithm processed the data to identify a
limited numbe of cause and effect
relationships between the equipment or
devices inFHgure 3 where there is a high
causation coefficientThis is derived from a
proprietary causal effects matriXhe causal
effects matrix tends to be sparse with
much small numer than in a correlation
matrix, typically about 1415% for the same
data.

The outputfrom the causal effects matrix
that provided invaluable insight for the
engineers is a grapfFigure 4)that ranks
causal relationship based on causal
coefficient and tle confidence level in the
causal relationship. It identifies those
relationships with high causality and high
confidence at a glance and engineers can use

this information to map it back to the
physical process.

It is easy to spot events that havehagh
causal coefficient with high confidence
levels and focus on the meaning and impact
of these insights.
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Condenser Coil P --> Flash Vessel P |

Circ Pump Suction P --> Ambient T

Circ Pump Suction P --> Inlet Differential T
Flash Vessel P --> Condenser Coil P

Circ Pump Suction P --> Stripping Gas Pressure
Stripping Gas Pressure --> Circ Pump Suction P
Ambient T --> Circ Pump Suction P

Flash Vessel P --> Measured Dew Point
Contactor Gas Inlet T --> Flash Vessel HC Level
Condenser Coil P --> Measured Dew Point

Contactor TEG Inlet T --> Circ Pump Suction T
Surge Drum Level --> Flash Vessel HC Level
Stripping Gas Pressure --> Filter Coalescer dP
1st Stage Discharge P --> Reboiler T

Filter Coalescer dP --> Flash Vessel HC Level

Filter Coalescer dP --> Reboiler T

Filter Coalescer dP --> Ambient T

Contactor Gas Inlet T --> Flash Vessel P
Contactor Gas Inlet T --> Surge Drum Level
Contactor Packing dP --> Filter Coalescer dP
Ambient T --> Measured Dew Point

M Causal coefficient M Confidence level

Figure4: Chart of the top cause and effect relationships
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Figure5: Overlay of causal relationships on a process flow diagrahowing causal coefficient values plus
confidence levels in brackets

flow diagram. This approach connects the
analytical model with the physical process

An enhanced FD diagram, kgure 5, shows
the top casual relabnships between the
equipment/devices overlaid on the process
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model for the engineers who can interpret
the results.

This diagram shows, for example the causal
relationship and confidence levelin
brackets, of the condenser coil pressure and
the flash vasel pressure (nodes | and J) that
correspond to the chart ifigure 4.

The plant engineers were most interested in
examining the main relationships, those with
the strongest measure casual coefficients
and higher levels of confidence.

Findings andbservationdrom the Phasel
Analysis

The chart in Kure 4 provided the most
insight to the FPSO operators.h& initial
objective to validate theCAalgorithm was
accomplished with physical evidence to
support the outputs of the rCA analysis. The
following threeexamples describe some of
that validation process.

The high casual coefficient of tlkendenser
coil pressve and the flash vessel pressure

Figure6: The top cause and effect relationshgiown as a directed graph

Figure 6 providea causal coefficient view in
a traditional graph that removesthe
contextual bias that an engineer may have.
This view enabled the engineers to see
causal relationships without the phigal
process relationships. It triangulated some
of their findings and observations from the
chart and process flow diagram views.

made sense from an engineering perspective
as it is part of the design. It was expected to
have a high causal relationship and it did.
This proved that the rCA algorithm
performed as expected.

The causal relationship betwa the
condenser coil pressure and the dewpoint
(middle of the chartwas not obvious prior
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