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1. INTRODUCTION 

With the advent of the 4th Industrial Revolution, referred to as Industrie 4.0 (I4.0) and the 

Industrial Internet of Things (IIoT), machines and systems have become more intelligent and 

more connected.  This connectivity has enabled data from the operational domain, the 

Operational Technology (OT), to become more accessible to the information technology (IT) 

domain.   

The continual growth of machine intelligence and proliferation of sensors generating non-stop 

data has created a tremendous body of information.  While data may have been acquired before, 

with some degree of analysis performed, the data was not being analyzed and understood to the 

extent possible today, especially in terms of real time analytics and related command and control. 

This wealth of actionable information provides the key to unlocking higher efficiency and 

increasing reliability of these machines and systems through predictive, connected and precise 

operation. To remain competitive, companies are looking to evolve their analytics approaches 

and decipher the true meaning in the data. This data provides insight into their system operations 

enabling reduction in overall operating and maintenance costs.  

One particular means to accomplish this reduction in costs is to maximize assets by minimizing 

downtime. Using sophisticated data analytics, combining the wealth of sensor data and other 

asset-related lifecycle parameters, companies are shifting their focus on “Preventative” 

maintenance with greater emphasis on “Predictive” maintenance. Using this approach, 

companies can begin to keep their assets operating more efficiently, more reliably, with longer 

periods of uptime, without taking their assets offline, avoiding costly downtime for regularly 

scheduled maintenance. By increasing uptime, with the ambitious goal of no unscheduled 

downtime, companies can keep their assets operational until the data analytics indicate a specific 

asset or part of an asset is approaching need for maintenance, thereby avoiding potential costly 

unplanned system failure. 

This article highlights a specific company that is not only aware of the value of the IIoT but is truly 

recognizing value from unlocking the meaning of the data. The predictive maintenance presented 

in this article is representative of actions being taken as a result of IIoT and I4.0. To become more 

competitive by leveraging the convergence of the IT and the OT in a secure, safe and connected 

manner, smart factories see this as one of the key ways to increase productivity and operate 

more efficiently through higher availability and increased machine and asset utilization. 
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2. BACKGROUND 

Plethora IIoT 1 , part of the ETXE-TAR Group, a federation of closely coupled industrial 

manufacturing companies, through use of machine learning is utilizing predictive maintenance 

to minimize downtime and maximize the operation of their sophisticated Computer Numeric 

Control (CNC) machines. These machines are used to build automobile powertrain parts, like 

crankshafts, camshafts and connecting rods, with highly precise requirements executed over an 

extremely short cycle time. A key advantage that Plethora utilizes is monitoring key parameters 

to effectively learn the system behavior to predict failures before they occur. With the support 

of ETXE-TAR and Ikergune, the research and development company for the ETXE-TAR Group and 

other ecosystem partners, Plethora IIoT has developed a system called Oberon. This system 

covers the needs from data gathering independently from the domain to visualization, giving 

important information in terms of machine behavior (useful for machine or system builder) and 

process behavior (useful for machine/system user). 

One of the key elements of the Oberon system is the intelligent gateway, designed and 

manufactured by System-on-Chip Engineering (SoC-e)2. The gateway utilizes the Xilinx Zynq SOC, 

combining both ARM processing and Programmable logic fabric in a highly integrated and 

reconfigurable System-on-Chip (SoC) device to perform real time acquisition, sensor fusion, 

filtering, pattern detection and analysis of the data extracted. The gateway is intelligent in the 

way that it combines smart networking, flexible hardware-software computation and high speed 

data acquisition systems. This system is able to provide “Plug & Work” operation through time-

sensitive, redundant protocols for Ethernet (High Availability-Seamless Redundancy / Parallel 

Redundancy Protocol - HSR/PRP). These protocols ensure zero loss of data in the event of 

network failure or hot plug-in due to plant layout changes. From the security and cyber-security 

point-of-view, the intelligent gateway ensures a multi- layered security approach. Strong security 

means are applied at the device, system, network and application levels. This approach, based 

on cybersecurity by design is a key element in the emerging connected industrial environment. 

Learnings from the Industrial Internet Consortium’s (IIC) Industrial Internet Security Framework 

(IISF) document are directly applied, as this is the same gateway found at the heart of the IIC 

Security Claims Evaluation Testbed. Details of the intelligent gateway functionality and 

capabilities applied to the Smart Factory are described in “Intelligent Gateways Make the Factory 

Smarter.”  

In terms of acquisition, sensor fusion, pre-processing and processing software developed by 

Ikergune, the main objective is to gather data coming from sensors with the required sampling 

rate, independently from the variable. Therefore, it can sample each variable with smart 

criterions: For example, temperature may not be measured with the same frequency of vibration 

                                                      
1 SPRI, Basque Industrie 4.0, 29 Nov 2016. [En línea]. Available:https://goo.gl/jrzFlF 
2 System-On-Chip engineering – SOC-e CPPS 40 Intelligent Gateway. 

http://www.iiconsortium.org/IISF.htm
http://www.iiconsortium.org/security-claims
https://forums.xilinx.com/t5/Xcell-Daily-Blog/Intelligent-Gateways-Make-a-Factory-Smarter/ba-p/692995
https://forums.xilinx.com/t5/Xcell-Daily-Blog/Intelligent-Gateways-Make-a-Factory-Smarter/ba-p/692995
https://goo.gl/jrzFlF
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because the data memory size required would   need to be exceedingly large - impractical and 

unnecessary.  

The other capability provided by the software is the ability to read complex sensors and perform 

pre-processing in terms of data reduction: For example, vibration is sampled at least two times 

the vibration frequency. In this case, a fast Fourier transform is performed and only the frequency 

of interest is stored. This is an area where there is high opportunity for more efficient processing 

– effectively using machine learning for pre-processing and feature selection. 

Next, data acquired from different sources needs to be joined to assure completeness of 

database and avoid empty data spaces (Not a Number -NaN)3. This Sensor fusion is performed 

using different multivariate techniques in real time. 

From this point, as shown in Figure 1, data is processed and then served to a superior process, 

which can be a machine learning algorithm, visualization and/or storage. The data is sent using 

OPC Unified Architecture (OPC-UA) or other protocols depending on the needs. For example, if 

data is needed for real time visualization below 45ms, OPC-UA protocol is used. 

 

 

Figure 1: The elements and the connectivity being utilized to develop and provide updates to the production system. 

Based on historical data acquired during typical operation, machine learning algorithms, both 

unsupervised and supervised, utilize this and other real-time operational data to identify and 

effectively learn system behavior patterns during the machining process. The data is analyzed in 

                                                      
3 R. C. LUO, C.-C. YIH y K. L. SU, «Multisensor fusion and integration: approaches, applications, and future research directions.,» 

IEEE Sensors journal, vol. 2, nº 2, 2002 
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real time on the intelligent gateway and compared to trained data to identify anomalous 

operation and predict degradation down to the component level, prior to system failure.   

3. MACHINE MONITORING WITHOUT PREDICTIVE MAINTENANCE  

Operational failure of the CNC machines’ spindles can result in hundreds of thousands of dollars 

of damages4. When spindle internal bearings fail, they effectively create a chain reaction that can 

destroy any linked device in close proximity due to stored energy. One such occurrence can shut 

down the production line for weeks, depending on the severity and spare parts availability. Total 

impact in terms of cost for a failure of this nature must include cost of materials and labor needed 

to replace the damaged parts and costs incurred due to system downtime, idling an entire 

production line and costs associated to delay of the assembly of vehicles waiting for the 

powertrains. Accounting for all related aspects including the idled workforce, total cost impact 

can easily reach millions of dollars per week.   

For example, a major manufacturer installed a monitoring system where data was being captured 

but never analyzed. During a post mortem of a CNC spindle failure, closer analysis of the data 

revealed telltale signs indicating the system functionality was outside of its normal operating 

range. Specifically, key vibration data acquired days prior to the failure, as shown in Figure 3, had 

a first peak, where failure initiated. At this first peak the only damaged part was a ball-bearing 

inside the component. Four days later, parts inside the bearing started to damage other nearby 

parts creating a catastrophic failure, where a 1.4g peak has been registered. At the first peak, the 

damage cost 25,000€ (Euro). At the second peak, the damage cost was 250,000€. 

 

Figure 2: Data leading up to a CNC spindle failure with spikes reflecting anomalous behavior 

                                                      
4 X. W. B. A. S. D. &. L. J. Jin, «Present Status and Future Growth of Advanced Maintenance Technology and Strategy in US 

Manufacturing,» International journal of prognostics and health management, vol. 7, 2016 
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This failure happened to a production line with a turnover capability of 30 M€ per day with 50 

operators directly working on the line per shift. When the failure occurred, the complete line had 

to be stopped during 3 shifts until the repair was completed. However, these failures may last for 

at least 30 shifts and the repair time is directly related to the availability of spare parts. In this 

case, the workforce cost and the lost turnover should be added to the complete cost. 

It is important to state that a machine learning-based monitoring system could detect the first 

failure peak, giving enough time to stop the line in a controlled manner. A production and 

workforce could then be reassigned to reduce the failure impact over production line 

productivity. In this case, a relatively simple machine learning algorithm is able to detect these 

types of anomalies within a variable, effectively warning about the problem when a first peak is 

detected or before. 

 

 

Figure 3: Summary of costs for damages due to bearing malfunction 

4. MACHINE LEARNING FOR PREDICTIVE MAINTENANCE 

Fast forward a few years to a new system where machine learning is being used to analyze the 

data to predict potential system failure 5 . First an understanding of the machine learning 

approach is needed to gain full appreciation of the scope of the predictive analytics performed 

to predict when the component/system may fail and even more importantly why the failure may 

occur. This, in turn, allows system optimizations that can extend the lifetime of the asset and the 

overall system. 

                                                      
5 D. GOYAL y B. S. PABLA, «Condition based maintenance of machine tools—A review,» CIRP Journal of Manufacturing Science 

and Technology, vol. 10, pp. 24-35, 2015 
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In terms of machine learning methodology, it is important to find the relevant variables to answer 

specific questions. This way, noise, overfitting and bandwidth usage is reduced. This technique is 

called “feature subset selection.” 

After the questions are selected, there are mainly two types of algorithms that should be 

selected, depending on the stage or the answer required. These algorithms are unsupervised and 

supervised learning6.  When it is not clear which type of information is going to be found, 

unsupervised learning (mainly clustering techniques) are used. This step is called knowledge 

discovery, where measuring techniques applied to data are used to group into different clusters 

or partitions. Those measuring techniques might be based on distances, densities, probability 

distributions, etc. The usage of each type of measurement depends on dataset complexity and 

size. 

However, if you want to answer a specific question and you have examples to train the system 

with known results from those examples, supervised learning is used.  By example, knowing that 

the tool tip behaves at certain values of temperature but not all of the values are known, one 

would use supervised learning to determine the unknown values. Here, a machine learning 

system is trained using the examples and then is tested with new examples. 

To build the complete system, the workflow with data reduction, described in Figure 4, would be 

used. The data is taken from the manufacturing system and sent to a machine learning algorithm 

that uses the new data and other information, such as mathematical models (Finite Element 

Method (FEM) results, behavior equations, etc.), to produce the predictive system. While data is 

travelling within this process, a summarization is performed, helping to only move data that is 

needed to solve the asked question. This helps to reduce the bandwidth utilization and increase 

the response speed. This type of data is called Smart Data:  For example, reduce the system’s 50K 

variables to select the most important variables – the “smart” metadata that addresses the key 

criteria is determined and communicated vs. flooding the network with non-critical data. 

                                                      
6 O. CHAPELLE, B. SCHOLKOPF y A. ZIEN, Semi-Supervised Learning, Cambridge, Massachusettes: The MIT Press, 2006 
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Figure 4: Reducing the Big Data to Critical Metadata to Get to the Smart Data 

 

One example of an application is when the tool tip is monitored for process deviations. Note, 

there are many types of process deviations possible depending on the nature of the product line 

operation and the required cycle time – there are many types of tools: A typical CNC machine has 

multiple tools with many different types of tool tips (laser, milling, drilling, grinding, tapping, etc.). 

Temperature fluctuations cause most common deviations. In these cases, variables like position 

and temperature in different points has to be measured. If 14 measuring points are selected 

(mainly different temperatures and tool tip position), using a sample rate of 5 minutes can give 

enough data to produce 11.2 KB/day (4 MB/year). This data with a supervised learning algorithm 

can increase the machine availability by 20%, which is nearly 3 hours/day. 

Another example is the operation behavior of servomotors. In this case, variables like torque, 

power, temperature, vibration and angular speed can be measured. The number of variables 

could be up to 15,000. However, using feature subset selection, the reduction could leave only 

50 variables and 1 TB/year. Figure 5 shows the results of using Unsupervised Learning to identify 

patterns relative to Power Consumption, Torque and other variables generating a “fingerprint” 

of the servo drive, where servomotor behavior is represented in the X-axis.    
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Figure 5: Clustering results for Torque vs. Power Consumption in X-axis 

The distinctive Butterfly pattern, shown in Figure 5, represents a complete cycle of the servo 

motor axis. Clustering of data is shown with the blue data points related to acceleration, direction 

and peak power in given cycles – acceleration and deceleration – symmetric – around the 0 

power. Green data plotted is similar to Blue but at different positions. Whereas the data plotted 

in Red reflects when the drive was stopped but where power and torque was still consumed to 

avoid movement while held in position. The data plot using the clustering technique produces a 

graphical representation that identifies the three states of the servo axis – acceleration, 

deceleration and the idle state to hold the position.  

 

Figure 6: Clustering results for Shaft Acceleration vs. Power in X-axis 
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Another point of view can be seen in Figure 6, where the acceleration level related to the shaft 

is plotted against servomotor power. In this case, the clustering technique distinguishes between 

idle, acceleration and deceleration and maximum power in terms of acceleration levels. The 

acceleration level is independent from the power consumption. However, power levels can be 

distinguished more clearly than in the data shown in Figure 5. Therefore, from the point of view 

of predictive maintenance, it is expected that a servomotor should maintain this fingerprint 

acceleration level at all power consumption levels. Since the acceleration is related to the shaft 

angular speed, a malfunction of the servomotor could be detected when anomalies are outside 

the clusters: for example, anomalous vibration levels at a given acceleration state. 

5. SUMMARY  

This system represents the convergence of the OT and the IT. Through this convergence and 

advances in sensor fusion, edge and cloud computing, machine learning is seeing adoption in 

many ways and is now playing a central role in smart Factory predictive analytics.  This article 

provides an example where both unsupervised and supervised machine learning are used in 

predictive maintenance: 

 Unsupervised Learning: as a first step to detect or find new information within data and 

for machine monitoring. 

 Supervised Learning: to answer specific questions regarding the spindle and overall 

machine behavior providing a 20% increase in improved asset availability, estimated at 

an additional three hours per day of use. 

Maximizing system operation and lifetime provides valuable advantages to further advance the 

intelligence of manufacturing facilities.  Specific areas directly related to Predictive Maintenance 

include: 

o Machine knowledge discovery 

o Transparency to the machine and process behavior 

o Increased understanding of system weaknesses 

o Ability to tune the operation to increase asset utilization 

o Optimizing the system for maximum productivity  

o Preventing Unplanned Downtime; detect anomalous operation; predict in 

advance of failure 

o Extending asset and system life 

6. FUTURE OUTLOOK: SMART FACTORY OPERATION:  FROM PREVENTATIVE TO 

PREDICTIVE TO PRESCRIPTIVE 

The path to intelligence is through “listening” to and “learning” what the data is saying. Gaining 

actionable insight is only valuable when acted upon in a meaningful way that provides value. 

Today a human operator is involved in many areas for preventative and predictive maintenance. 
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Looking to the near future, not only will the Smart Factory (and other IIoT related “things”) track 

and identify issues prior to failure, but also without human involvement (Figure 7). Already in 

various stages of development, we will see products and systems taking action on their own, self-

optimizing – a more prescriptive approach leading to the future of real machine time self-

optimization through Machine Learning at the Edge.  

 

   

 

 

Figure 7: Evolution of Information Optimization (Image Source: Automation World webinar) 

This approach, of self-optimizing and self-prognostics is already under investigation.  As 

recognized today, Machine Learning is rapidly evolving and will continue to increase in adoption 

in new and innovative ways, taking a pivotal role in further enhancing the intelligence of the 

factory.  
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