

IIC Journal of Innovation - 1 -

A Practical Guide to Using the Industrial Internet

Connectivity Framework

Authors:

Stan Schneider, PhD., CEO
Real-Time Innovations, Inc.
stan@rti.com

Rajive Joshi, PhD., Principal Solution Architect
Real-Time Innovations, Inc.
rajive@rti.com

mailto:stan@rti.com
mailto:rajive@rti.com

A Practical Guide to Using the Industrial Internet Connectivity Framework

 - 2 - September 2017

INTRODUCTION

The Industrial Internet of Things (IIoT) is a

vast, expanding space. The Industrial

Internet Consortium’s (IIC) primary mission

is to resolve the resulting confusion and thus

guide the industry. The IIC developed the

Industrial Internet Connectivity Framework

(IICF) to help designers understand the many

standards and choose the right one for their

applications.

The IICF focuses on the layers above the

network packet exchange. It offers profound

insights into architecture, standards, and use

cases. It also presents a way to build an

expansive IIoT network in the future by

linking a few “core connectivity standards”

that address different regions of the

connectivity space.

This paper first outlines the IICF’s key

insights into system architecture, including

the newly-defined IIoT connectivity stack.

With that architecture, we explain why the

IICF sorts the various standards into the

stack based on their provided

interoperability. Finally, the IICF offers deep

analysis of six key standards and

technologies: DDS 1 , OPC UA 2 , oneM2M 3 ,

1 The Data Distribution Service (DDS) is a series of standards managed by the Object Management Group (OMG),

https://portals.omg.org/dds/

2 OPC Unified Architecture (OPC UA) is a standard managed by the OPC Foundation, https://opcfoundation.org

3 oneM2M is a standard managed by the oneM2M consortium, http://www.onem2m.org/. OPC UA is also known as IEC 62541

4 The Hypertext Transfer Protocol (HTTP) is a standard, RFC 7231, managed by the Internet Engineering Task Force (IETF).

https://tools.ietf.org/html/rfc7231

5 MQ Telemetry Transport (MQTT) is a standard managed by the Organization for the Advancement of Structured Information

Standards (OASIS). http://mqtt.org/

6 The Constrained Application Protocol (CoAP) is a standard, RFC 7252, managed by IETF. https://tools.ietf.org/html/rfc7252

RESTful HTTP4, MQTT5, and CoAP6. There are

of course many others; the IIC chose these

because they have the greatest traction.

The most surprising conclusion: the IIoT

space is so big that the connectivity

technologies essentially do not overlap.

Thus, by understanding the use cases,

architectures and target end users, it is

possible to select a best-candidate

connectivity standard for most problems.

Finally, the paper then distills the IICF results

into a simple tool that designers can use to

select the right technology. The tool is a

simple set of yes-or-no questions that assess

the fit for each technology, as well as

technical and business justification for those

questions.

THE IIOT SPACE AND THE IICF

The Internet of Things (IoT) combines many

technologies, encompasses vast use cases,

and attracts vendors of all sorts who want to

join the fray. This generates confusion,

nowhere more apparent than in its most

important aspect: connectivity.

http://www.iic.org/
http://www.iic.org/
http://www.iiconsortium.org/press-room/02-28-17.htm
http://www.iiconsortium.org/press-room/02-28-17.htm
https://opcfoundation.org/
http://www.onem2m.org/
https://tools.ietf.org/html/rfc7231
http://mqtt.org/

A Practical Guide to Using the Industrial Internet Connectivity Framework

IIC Journal of Innovation - 3 -

Connectivity Technologies Do

Not Overlap

The IICF includes the deep

insights of many experts,

including those from the top

industry consortia, many

companies and most of the

important standards. Its most

surprising conclusion: the IIoT

is so big that the technologies

don’t really overlap. The

impression that there is

overlap is mostly just

confusion.

Designers may think they can

choose any standard and succeed. But this

implies the IIoT connectivity solution space

overlaps, as in the Misconception figure.

The reality is very different. The IIoT covers

many industries with very different use

cases. The range is breathtaking. There are

thousands of companies and uncountable

thousands of applications in the IIoT space.

The IIoT really is the technological future of

the entire world.

The connectivity technologies and standards

that target these applications are very

different. In fact, the IIoT space is so big that

the technology options barely overlap.

Today’s architecture challenge in the IIoT

space is therefore not one of choosing

among overlapping standards that may each

be able to reasonably solve a problem. The

challenge is understanding

the technologies, comparing

the intended use to the

application and choosing the

one that best addresses the

particular challenge. Sure,

stretching a technology all out

of proportion may make

anything work. But, that will

result in a lot of extra work

and an awkward design. If you

look at a more realistic map of

the situation, it looks more

like the sparse Venn diagram

in the Reality figure (Figure 2)

Figure 1: Misconception. Before the IICF, people (including the authors)

assumed that competing standards meet overlapping requirements in the

IIoT connectivity space. This designer’s application (X marks the spot), fits

B or C; either should work.

B

CA

X

Choose A

Choose B

Choose A or B

Your
application:

Choose B or C

Requirement 1, e.g. latency

R
eq

u
ir

em
en

t
2

, e
.g

. f
an

-o
u

t

Figure 2: Reality. The connectivity standards turn out to not overlap.

Most applications will not be a perfect fit, and must adapt. Your challenge

is sometimes choosing something imperfect and making it work.

B

CA

X
Choose A

Choose B

Nothing fits
well

Your application:
Choose B; it’s the

best you’ll get

Requirement 1, e.g. latency

R
eq

u
ir

em
en

t
2

, e
.g

. f
an

-o
u

t

A Practical Guide to Using the Industrial Internet Connectivity Framework

 - 4 - September 2017

than the overlapping one in the

Misconception figure (Figure 1).

This may sound distressing, but in reality, the

lack of overlap in the IIoT space actually

makes an architect’s task much simpler. The

real problem is not choosing between similar

options; it is understanding the different

options and overcoming biases.

The Industrial Connectivity Stack

The Internet has well-developed layered

stack models, most notably the OSI “7-layer”

model and the Internet “4-layer” model.

However, the IIC experts found that these

models did not adequately capture the

requirements of industrial networks. Thus,

the IICF defines a new model, called the IIoT

Connectivity Stack Model (See Figure 3).

Both the Enterprise Internet and the

Industrial Internet function by sharing data.

However, industrial systems present

different challenges than enterprise

networks do. Most importantly, industrial

systems combine complex, intimately

interconnected software modules and

devices. Interoperability between the

various components is the most demanding

requirement on the architecture. With crisp

definitions of interoperability, the other

requirements can be much better

understood. The IIoT Connectivity stack

shares layers 1-3 with the OSI model and

defines levels 4 through 6 in terms of the

interoperability provided.

The layers focus on what is exchanged. At

the network layer, participants exchange

bounded-length packets of information. This

is usually implemented by the familiar

Internet Protocol (IP).

Above it, the transport layer exchanges

variable-length messages. Participants share

opaque sequences of bytes. Participants using

Figure 3: IIoT Connectivity Stack. Below layer 3 “Networking”, the IIoT stack duplicates traditional Internet

stacks. Above, it focuses on clarifying the interoperability that industrial IoT systems need.

https://en.wikipedia.org/wiki/OSI_model
https://en.wikipedia.org/wiki/OSI_model
https://en.wikipedia.org/wiki/Internet_protocol_suite

A Practical Guide to Using the Industrial Internet Connectivity Framework

IIC Journal of Innovation - 5 -

this layer can share information, but

interpretation of that information is

completely up to the applications. This enables

basic communications, but makes it difficult to

interoperate between devices and software

that is not designed together.

The next layer, called the framework layer,

adds structure to the data exchange. This

allows components to understand how to

process the messages, also called “syntactic”

interoperability. Participants above this level

can use different programming languages,

operating systems, and processor

architectures transparently. The framework

layer also enables configurable quality-of-

services (QoS) like reliability, durability,

filtering and more. QoS enables control over

data delivery, including selecting information

and endpoint delivery conditions. Together,

these functions enable a “data model” for the

system. The data model is the basis for diverse

components to work together. Sophisticated

implementations can even match some

differences in data model, thus allowing a

large distributed system to grow incrementally

from parts that are not all developed or

deployed together. Thus, syntactic

interoperability is critical functionality for an

industrial Internet.

Once participants can exchange known

structures, they must also know how to

interpret the information, aka “semantic

interoperability”. This is the responsibility of

the distributed data interoperability and

management layer. In the current state-of-

the-art, semantic definition is only practical

within an industry. There are many standards

that operate at this level, including the ICE

(Integrated Clinical Environment) in the

medical industry, OpenFMB (Open Field

Message Bus) in the power industry, and

others. Semantic interoperability is beyond

the scope of the IICF and this paper.

The Core Connectivity Standard

Architecture

The IIoT space is far too big to expect a single

connectivity standard to span everything.

Thus, to build an Internet, we will eventually

need to connect subsystems based on

different standards.

The IICF does this with the concept of a

“Core Connectivity Standard” (CCS). The CCS

design eliminates the “N-squared” problem

by choosing a few standards that together

span the space and separately provide key

functionality. The design simply defines the

few standard bridges (called “core

gateways”) between core standards. Other

connectivity technologies can then interface

to the system through any one CCS. This

enables practical end-to-end data exchange,

as shown in the Core Connectivity

Architecture figure.

This design enables a scalable, deeply

connected future Industrial Internet of

Things. Of course, it does introduce the

question of what qualifies a standard to be a

core standard. The IIC reasonably requires

that a connectivity core standard shall:

 Provide syntactic interoperability,

 Be an open standard with strong

independent, international governance

and with support for certifying or

validating or testing interoperability of

implementations,

 Be horizontal and neutral in its

applicability across industries,

 Be stable and deployed across multiple

vertical industries,

https://www.astm.org/Standards/F2761.htm
https://www.astm.org/Standards/F2761.htm
http://www.sgip.org/openfmb/
http://www.sgip.org/openfmb/

A Practical Guide to Using the Industrial Internet Connectivity Framework

 - 6 - September 2017

 Have standards-defined Core Gateways

to all other connectivity core standards.

With that definition, the IIC experts

proceeded to define criteria, survey

standards and evaluate all the standards

against those criteria. The criteria definitions

alone are a huge contribution, beyond the

scope of this paper. They resulted in an

“Assessment Template” with deep analyses

of the six standards with greatest IIoT

traction: DDS, OPC UA, oneM2M, RESTful

HTTP, MQTT, and CoAP. The assessment

includes business, usage, functional and

implementation viewpoints. It is a unique

analysis of connectivity technologies for

industrial systems. In the end, the IICF

identified four of the six as potential core

standards: DDS, OPC UA, oneM2M, and

RESTful HTTP.

Of course, this design targets a future world

of vastly connected systems. There is a more

immediate question: “if I’m starting an IIoT

project, what should I use?” Next, we

present the IICF guidance and a simple tool

to navigate that guidance.

Figure 4: Core Connectivity Architecture. Each core connectivity standard requires a standardized core gateway to

connect to the other core architectures. Other domain technologies can then interface to the system via any core

standard. This design scales linearly with the number of technologies, thus enabling a true Internet.

Few Core Standards
Standard Core

Gateways

Many domain
technologies

A Practical Guide to Using the Industrial Internet Connectivity Framework

IIC Journal of Innovation - 7 -

CHOOSING A CONNECTIVITY

STANDARD

In one key table, the IICF outlines the

example use cases and application spaces of

the various core connectivity options. The

intention, and the effect, is to provide useful

guidance to architects struggling with the

confusing arrays of vendor and advocate

claims. The table is reproduced below in the

IIC Use Case Examples figure.

Let’s take this process a bit further. It is

possible to ask a few very simple questions

for each technology option and quickly

narrow the choices. These questions may

oversimplify the problem, but they are a

great starting point. The IICF identifies four

potential “core connectivity standards:”

Table 8-2 Non-overlapping system aspect examples addressed by the potential IIoT connectivity core

standards

IIC Use Case Examples. The IIoT space is so big that the primary users of the different technologies

don’t speak the same language. In practice, there are few applications that could reasonably

make alternative choices. The real problem in the industry is the lack of understanding of the

options. The IIC experts sorted the technologies into very clearly different “boxes”. The choice is

nearly as simple as identifying which box most sounds like you.

A Practical Guide to Using the Industrial Internet Connectivity Framework

 - 8 - September 2017

DDS, OPC UA, oneM2M, and RESTful HTTP.

We analyze these in this section. MQTT does

not qualify as an IICF “core connectivity

standard” because it does not have a

standard typing system required for

syntactic interoperability. We examine it

nonetheless because it has wide awareness.

DDS

Here are five questions to answer to decide

if you need DDS:

1. Is it a big problem if your system goes

down for a short time?

2. Are milliseconds important in your

communications?

3. Do you have more than 10 software

engineers?

4. Are you sending data to many places, as

opposed to just one (like to the cloud or

a database)?

5. Are you implementing a new IIoT

architecture?

If you answered three out of the five

questions “yes,” you probably should use

DDS.

DDS is a series of standards managed by the

OMG that define a databus. A databus is

data-centric information flow control. It’s a

similar concept to a database, which is data-

centric information storage. The key

difference: a database searches old

information by relating properties of stored

data. A databus finds future information by

filtering properties of the incoming data.

Both understand the data contents and let

applications act directly on and through the

data rather than with each other.

Applications using a database or a databus

do not have a direct relationship with peer

applications.

The databus uses knowledge of the

structure, contents and demands on data to

manage dataflow. It can, for instance,

resolve redundancy to support multiple

sources, sinks and networks. The databus

can control Quality of Service (QoS) like

update rate, reliability and guaranteed

notification of data liveliness. It can look at

the data inside the updates and optimize

how to send them, or decide not to send

them at all. It also can discover and secure

data flows dynamically. All of these things

define interaction between software

modules. The data-centric paradigm thus

enables software integration.

So how does this satisfy the five questions?

1. Since it is directly controlling flow, a

databus does not require servers. So,

there’s no single point of failure. The

downtime required to reboot a server

and remake connections unexpectedly is

never necessary. Without direct

relationships with peers, redundancy is

transparent. If the application is

managing a thermostat, optimizing a

plant, or assembling parts, a short

downtime is not catastrophic. However,

if the software is responsible for

someone’s breathing or the stability of

the power grid, even short interruptions

cannot be tolerated.

2. Since the databus has full control over

how data flows, it can send information

directly between peers. Thus, it can

deliver in times measured in milliseconds

or microseconds. DDS can use multicast

intelligently when available. It knows

A Practical Guide to Using the Industrial Internet Connectivity Framework

IIC Journal of Innovation - 9 -

delivery deadline requirements and can

measure if the system is meeting

delivery times. So, it can warn

applications if the network (or anything

else) cannot handle the needed flow

rates.

3. Teams of programmers must control

interfaces between modules. The

databus specifies a full data model. All

connectivity frameworks do this to some

extent, but the databus specification is

more expressive. It includes not only

type information, but also QoS such as

deadlines, sensor availability and flow

rates. So, the interfaces are defined and

then enforced at runtime. The databus

can also manage the evolution of those

interfaces, allowing modules, for

instance, that use newer and older

versions of an interface to interoperate.

That is important for a practical, large

IIoT system that must be incrementally

deployed and updated.

4. A databus controls flow between many

complex applications. It handles a mix of

fast and slow components. Its filtering

can make the overall flow manageable.

Peer discovery delivers data between

multiple field-based components. And

QoS control guarantees the flows. There

are simpler solutions for one-way, one-

destination flows such as capturing

sensor information to send it to the

cloud for analysis.

5. Finally, using a databus requires a

completely new architecture. Most DDS

designs are building something new

rather than optimizing something old.

The databus can integrate legacy

subsystems via gateways and adapters,

but it should not be considered an

incremental design change.

Most databus systems do not have all five of

these properties. Three of the five indicate

that a databus design will be compelling.

OPC UA

OPC UA is a standard managed by the OPC

Foundation, also documented as IEC 62541.

OPC UA targets device interoperability.

Rather than accessing devices directly

through proprietary application program

interfaces (APIs), OPC UA defines standard

APIs that allow changing device types or

vendors. This also lets higher-level

applications such as human-machine

interfaces (HMI) find, connect to and control

the various devices in factories.

OPC UA divides system software into clients

and servers. The servers usually reside on a

device or higher-level Programmable Logic

Controller (PLC). They provide a way to

access the device through a standard “device

model.” There are standard device models

for dozens of types of devices from sensors

to feedback controllers. Each manufacturer

is responsible for providing the server that

maps the generic device model to its

particular device. The servers expose a

standardized object-oriented, remotely-

callable API that implements the device

model.

Clients can connect to a device and call

functions using the generic device model.

Thus, client software is independent of the

actual device internals and factory

integrators are free to switch manufacturers

or models as needed. So, OPC UA can build

and maintain a system from interchangeable

A Practical Guide to Using the Industrial Internet Connectivity Framework

 - 10 - September 2017

parts, much like standardized printer drivers

allow PC system integration. Note that the

device model also provides a level of

“semantic” interoperability, because the

device model defines the generic object APIs

in known units and specified reference

points.

Determine if you should use OPC UA by

answering the following questions:

1. Are you in discrete manufacturing?

2. Must you connect to an Industrie 4.0

system?

3. Are you building a device that will be

integrated by control or process

engineers or technicians, rather than

software engineers?

4. Will your product be used in different

applications in different systems, as

opposed to one (type of) system where

you control the architecture?

5. Are you building equipment for a

“workcell” or “skid?”

Three “yes” answers to these five questions

point strongly to OPC UA. Let’s look at how

the technology fits these use case indicators:

1. OPC UA is well-positioned for discrete

manufacturing. These applications are

characterized by integrations of devices

into sets of tightly coordinated

subsystems. Since users want to avoid

vendor lock-in, a ready supply of devices

with interchangeable device models is

important.

2. The German initiative Industrie 4.0

recommends OPC UA. Industrie 4.0 is

focused on manufacturing, in contrast to

the IIC that works on IIoT technical

system architectures across verticals. In

a sound bite, Industrie 4.0 is about

making things, while the IIC is about

making things work. They intersect only

in manufacturing systems.

3. OPC UA provides more than

connectivity; it also has pre-defined

device models and a device integration

architecture. Those using and choosing it

usually target users who are plant or

process engineers, rather than

programmers. System integration in

manufacturing is usually done between

devices, not software modules. OPC UA

has very helpful device models that aid

interoperability between device

manufacturers.

4. OPC UA has a system discovery

mechanism called an “address space.”

This can be rolled up to a site-wide

server, for instance and the system

connected to a site HMI. This dynamic

system building is very useful for

providing similar functionality, such as

historian storage or HMI viewing, to very

different applications. It is appropriate

where your users control the system

design, not you.

5. Most OPC UA systems end up in

workcells or on process skids. These are

a stand-alone subsystems, usually

incorporating 20 devices or so. OPC UA,

and especially the industrial-integration

software that supports it, targets

workcell integration. The address model

and object-oriented nature directly

support a hierarchy of these workcells.

Users of the other standards rarely

characterize their use cases as

“workcells.”

A Practical Guide to Using the Industrial Internet Connectivity Framework

IIC Journal of Innovation - 11 -

OneM2M

OneM2M provides a common service layer

that sits between applications and

connectivity transport. Its emphasis is on

providing common services, on top of

different connectivity standards.

To determine if you should use oneM2M,

consider these questions:

1. Do you know what “ICT” stands for and

does it describe what you do?

2. Is the cellular network your primary

connection technology?

3. Are your target applications largely

composed of moving parts?

4. Can the components of the system

tolerate intermittent connections and

loosely-controlled latencies?

5. Will the system leverage services

provided by a communications provider

such as a telco?

These questions differ in character from the

questions about the previous technologies.

OneM2M results from cooperation among

many mobile wireless providers. It targets

networks of mobile devices that

communicate mostly or only through the

base-station infrastructure.

The following points examine why oneM2M

is implied by these questions:

1. Surprisingly, most target users of DDS

and OPC UA cannot even correctly define

the name of oneM2M’s target industry

as Information and Communication

Technology (ICT). There are, of course,

exceptions. But, if you consider yourself

in the ICT industry, then you need to

consider OneM2M: It was designed for

you.

2. The core design of oneM2M is to define

services that mobile devices can use to

cooperate and integrate. If you are going

to use those services, you need to

connect to them. They will be running in

the platform layer (cloud) connected

mostly through the cellular data

infrastructure. Other technologies also

use IP traffic over the cell network, but

they usually also heavily leverage LAN,

local wireless or WAN networking

technologies in their designs.

3. There is a potential future market for 5G

wireless integration of fixed assets such

as manufacturing cells. However, this

technology is still years away. oneM2M

performs best for mobile assets. One

especially powerful aspect is that

oneM2M abstracts differences in

protocols to those devices. Thus, it can

integrate different ways to connect to

similar devices.

4. Cellular mobile systems are not reliably

connected. Thus, applications must not

fail when communications are offline for

a few seconds or minutes.

5. oneM2M system designers assume a

cloud backend in their designs. The core

of oneM2M is the standard services layer

that is provided by a telco or its partners.

RESTful HTTP

REST (Representational State Transfer) over

HTTP is the most common interface between

consumer applications and web services.

REST is an architectural pattern for accessing

and modifying an object or resource. One

server usually controls the object; others

request a “representation” and may then

send requests to create, modify or delete the

object.

A Practical Guide to Using the Industrial Internet Connectivity Framework

 - 12 - September 2017

To see if RESTful HTTP is the best candidate

for your application, ask these questions:

1. Are you connecting independent devices

to a single web service API?

2. Are you building an HMI interface to an

IoT device or service?

3. Does your application only need to be

fast enough for human interaction?

4. Must your dataflow cross firewalls that

you do not control?

5. Is there no device-to-device

communication?

Three “yes” answers indicate you will likely

be best off with RESTful HTTP. The reasons:

1. RESTful HTTP fundamentally makes it

easy to connect a field device to a web

service. REST is the most widespread way

to build web services, enabling copious

offerings to help developers. For

instance, the DreamFactory open source

project automatically creates APIs from

most any database, thus enabling a

centralized data-centric approach.

While most applications use hypertext to

present a linked view of a web page to a

user, this paradigm is also similar for

many IIoT “monitoring” applications.

These applications are similar to smart-

phone apps, except there is no human

user. Instead of a phone, the end entity

is a “thing,” typically a single device.

From a connectivity perspective, the

things usually have only a single

connection to an IoT platform. This

category includes most of the

“consumer” IoT, including thermostats,

wearables and smart home locks.

The most important industrial

applications are “predictive

maintenance” systems that upload

device data to the cloud. Cloud systems

then analyze the data to predict when a

part may fail, allowing proactive repair.

2. HTTP is the most common way to serve

information to human users. While most

think of HTTP servers as living in the

cloud with clients on the edge, this often

is not the case in IoT. The server often, in

fact, runs on the device itself, providing

an intuitive configuration and

management interface. Browsers can

simply connect directly to the device,

giving full access to advanced visual

capabilities. This is limited to local

connections, so another common

configuration is to combine this with the

above by having both the device and the

user connect to a cloud-based HTTP

service. This allows easy remote access

to the device.

3. RESTful HTTP is an approach, not a

standard with an official type system.

However, most web systems use text

encodings like JSON or XML. Text

encoding is not fast so response speeds

may satisfy humans, but not fast

machines. Binary systems like Google

Protocol Buffers (Protobuf) and the new

HTTP/2 standard offer more efficiency,

but are not yet widely used. HTTP runs

over TCP, which does not deliver low

latency.

4. Because all websites offer HTTP services,

most IT firewalls allow connections to

HTTP’s default port (80). Deep packet

inspection systems will likely accept

HTTP. Thus, using HTTP on port 80 is

usually the easiest way to traverse

firewalls without special configuration.

https://www.dreamfactory.com/
https://www.dreamfactory.com/

A Practical Guide to Using the Industrial Internet Connectivity Framework

IIC Journal of Innovation - 13 -

5. RESTful HTTP requires that all devices

connect to a server. While multiple

devices may interact through that server

or share a database, applications that

share data between devices are rare.

MQTT

MQTT is a very simple protocol designed

mostly for the “data collection” use case. It

does not qualify as a “core connectivity

standard” per the IICF guidelines, because it

has no standard type system. Without a type

system, it cannot offer a standard ability to

interoperate at the “syntactic” data-

structure level, leaving all data

interpretation to the application.

Nonetheless, MQTT enjoys significant

awareness. Because of its simplicity, simple

questions about your system will help

determine if it is appropriate:

1. Do you think of your application as data

collection?

2. Is there little device-to-device

communications?

3. Is interoperability not a consideration?

4. Do you have many small devices?

5. Is software a minor challenge?

Again, if you answer three or more of these

“yes,” you should look at MQTT. The

reasons:

1. The first “T” in MQTT stands for

“Telemetry,” or data collection at a

distance. This is its main use case.

2. MQTT is designed as a hub-and-spoke

design that requires a broker. It does not

support direct inter-device

communications. Choosing MQTT for

device-to-device communications is

awkward.

3. Without a type system, MQTT

applications are tightly coupled – they

must all be aware of the data format. The

only way to build interoperability is to

implement a way to share types in user

code. As a result, most of all MQTT

applications are standalone systems.

MQTT also does not help with system

evolution; version compatibility

between components must be provided

by the applications.

4. MQTT is by far the simplest technology

considered here. If you have many small

devices that are simply connected,

simple software can handle your

challenge.

5. MQTT offers little to ease software

development. There is only one QoS

setting (reliability). There are no defined

services. It offers no data or device

modeling. You are therefore going to

have to write all of the software from

scratch; that is only practical if you have

a simple software challenge.

Comparisons and Overlaps

Comparing these technologies highlights the

stark differences and non-overlapping

nature of connectivity approaches.

For instance, OPC UA is object oriented (OO),

while DDS is data centric. Those are

diametric opposites. The OO mantra is

“encapsulate data, expose methods.” Data

centricity is all about exposing data and

there are no user-defined methods. The only

methods are defined by the standard.

OO systems work like a sequential

programming language. You “call a method”

on a remote server, it returns. Then you call

the next. It is simple and intuitive for getting

A Practical Guide to Using the Industrial Internet Connectivity Framework

 - 14 - September 2017

and setting values. However, it is difficult to

call many methods in parallel. The new OPC

UA “pub/sub” functionality retains this

flavor. Applications fundamentally interact

with active remote peers. The paradigm is

sequential reading and writing device values

or streams, organized as a larger “address

space.”

Software systems built with OPC UA are

typically compositions of existing modules

like historians and HMIs. Direct OPC UA

users are mostly device vendors. End OPC

UA users are typically control or process

engineers building and configuring systems

of devices and existing software modules.

OPC UA does not offer software teams

integrating custom software help with

complex interfaces that need a common

system data model.

DDS, on the other hand, directly supports

large custom software integrations. It

explicitly requires a system data model and

then uses that to automatically enforce

interfaces. It works well for building and

integrating AI modules, custom software

development and wide data distribution.

Everything is redundant and massively

parallel. Most DDS end users are teams of

programmers with dozens or even

thousands of developers. DDS frustrates

non-programmers who want to quickly

integrate devices without much new

software.

Thus, DDS and OPC UA target vastly different

users. For OPC UA, end-user teams with

more than a few programmers are rare. DDS

is the opposite; most end-user teams have

many programmers. That results in vastly

different market penetration, depending on

the integration challenge. For example, most

OPC UA applications are in discrete

manufacturing, while DDS has essentially

none. That’s because discrete

manufacturing systems today are built via

device, rather than software, integration.

Similarly, MQTT applications mostly target

data collection from devices to a central

store or analysis function. This is a rare

application for either OPC UA or DDS, which

work between devices. Also, oneM2M works

by offering common services aimed at

integrating mobile devices. None of the

other technologies target this application.

THE FUTURE

Combinations of the core standards will

make great sense in the future. For instance,

future complex software systems can use

DDS, but access interchangeable OPC UA

devices through a gateway. That design is

powerful.

The IICF specifies an architecture for sharing

data across connectivity technologies to

allow this future, pervasive Industrial

Internet. IIoT use cases are evolving from

simple monitoring to optimization and

finally to autonomy. These increasingly

require more powerful integration.

Today’s IIoT designs are relatively isolated

within industries. Someday, there will also

be cross-industry integrations, such as

manufacturing systems integrated with

transportation and power. More

importantly, sophisticated autonomy

software will reconfigure workcells, creating

a bold new world for component device

vendors. Wireless 5G systems will

A Practical Guide to Using the Industrial Internet Connectivity Framework

IIC Journal of Innovation - 15 -

interoperate with freeway controllers and

autonomous vehicles. 5G may even directly

control factory devices, eliminating wiring in

manufacturing.

However, designers should consider the

vastness of the space. Today, there are few

concrete needs to bridge the huge gaps

between connectivity systems. That doesn’t

mean the industry is not responding to the

obvious need. Gateway standard efforts are

active between all the core connectivity

standards. A recent demonstration at an IIC

testbed shows a bridge between DDS and

OPC UA. Long term, these integrations will

allow bigger systems combining

technologies. For now, designers must

understand the vast differences between

connectivity standards and choose the one

that best fits their problem space.

 Return to IIC Journal of Innovation landing page for more articles and past editions.

The views expressed in the IIC Journal of Innovation are the contributing authors’ views and do

not necessarily represent the views of their respective employers nor those of the Industrial

Internet Consortium.

© 2017 The Industrial Internet Consortium logo is a registered trademark of Object Management

Group®. Other logos, products and company names referenced in this publication are property

of their respective companies.

https://www.rti.com/industries/opcf-and-omg-cooperation
https://www.rti.com/industries/opcf-and-omg-cooperation
https://www.rti.com/industries/opcf-and-omg-cooperation
http://www.iiconsortium.org/journal-of-innovation.htm

