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INTRODUCTION 

The Industrial Internet of Things (IIoT) is a 

vast, expanding space. The Industrial 

Internet Consortium’s (IIC) primary mission 

is to resolve the resulting confusion and thus 

guide the industry. The IIC developed the 

Industrial Internet Connectivity Framework 

(IICF) to help designers understand the many 

standards and choose the right one for their 

applications.   

The IICF focuses on the layers above the 

network packet exchange. It offers profound 

insights into architecture, standards, and use 

cases. It also presents a way to build an 

expansive IIoT network in the future by 

linking a few “core connectivity standards” 

that address different regions of the 

connectivity space.   

This paper first outlines the IICF’s key 

insights into system architecture, including 

the newly-defined IIoT connectivity stack. 

With that architecture, we explain why the 

IICF sorts the various standards into the 

stack based on their provided 

interoperability. Finally, the IICF offers deep 

analysis of six key standards and 

technologies: DDS 1 , OPC UA 2 , oneM2M 3 , 

                                                      

1  The Data Distribution Service (DDS) is a series of standards managed by the Object Management Group (OMG), 

https://portals.omg.org/dds/ 

2 OPC Unified Architecture (OPC UA) is a standard managed by the OPC Foundation, https://opcfoundation.org 

3 oneM2M is a standard managed by the oneM2M consortium, http://www.onem2m.org/.  OPC UA is also known as IEC 62541 

4 The Hypertext Transfer Protocol (HTTP) is a standard, RFC 7231, managed by the Internet Engineering Task Force (IETF).  

https://tools.ietf.org/html/rfc7231 

5 MQ Telemetry Transport (MQTT) is a standard managed by the Organization for the Advancement of Structured Information 

Standards (OASIS).  http://mqtt.org/ 

6 The Constrained Application Protocol (CoAP) is a standard, RFC 7252, managed by IETF.  https://tools.ietf.org/html/rfc7252 

RESTful HTTP4, MQTT5, and CoAP6.  There are 

of course many others; the IIC chose these 

because they have the greatest traction. 

The most surprising conclusion: the IIoT 

space is so big that the connectivity 

technologies essentially do not overlap. 

Thus, by understanding the use cases, 

architectures and target end users, it is 

possible to select a best-candidate 

connectivity standard for most problems.   

Finally, the paper then distills the IICF results 

into a simple tool that designers can use to 

select the right technology. The tool is a 

simple set of yes-or-no questions that assess 

the fit for each technology, as well as 

technical and business justification for those 

questions.  

THE IIOT SPACE AND THE IICF 

The Internet of Things (IoT) combines many 

technologies, encompasses vast use cases, 

and attracts vendors of all sorts who want to 

join the fray. This generates confusion, 

nowhere more apparent than in its most 

important aspect: connectivity.  

  

http://www.iic.org/
http://www.iic.org/
http://www.iiconsortium.org/press-room/02-28-17.htm
http://www.iiconsortium.org/press-room/02-28-17.htm
https://opcfoundation.org/
http://www.onem2m.org/
https://tools.ietf.org/html/rfc7231
http://mqtt.org/
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Connectivity Technologies Do 

Not Overlap  

The IICF includes the deep 

insights of many experts, 

including those from the top 

industry consortia, many 

companies and most of the 

important standards. Its most 

surprising conclusion: the IIoT 

is so big that the technologies 

don’t really overlap. The 

impression that there is 

overlap is mostly just 

confusion.    

Designers may think they can 

choose any standard and succeed. But this 

implies the IIoT connectivity solution space 

overlaps, as in the Misconception figure.  

The reality is very different. The IIoT covers 

many industries with very different use 

cases. The range is breathtaking. There are 

thousands of companies and uncountable 

thousands of applications in the IIoT space. 

The IIoT really is the technological future of 

the entire world. 

The connectivity technologies and standards 

that target these applications are very 

different. In fact, the IIoT space is so big that 

the technology options barely overlap. 

Today’s architecture challenge in the IIoT 

space is therefore not one of choosing 

among overlapping standards that may each 

be able to reasonably solve a problem. The 

challenge is understanding 

the technologies, comparing 

the intended use to the 

application and choosing the 

one that best addresses the 

particular challenge. Sure, 

stretching a technology all out 

of proportion may make 

anything work. But, that will 

result in a lot of extra work 

and an awkward design. If you 

look at a more realistic map of 

the situation, it looks more 

like the sparse Venn diagram 

in the Reality figure (Figure 2) 

 
Figure 1: Misconception.  Before the IICF, people (including the authors) 

assumed that competing standards meet overlapping requirements in the 

IIoT connectivity space. This designer’s application (X marks the spot), fits 

B or C; either should work. 
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Figure 2: Reality.  The connectivity standards turn out to not overlap.  

Most applications will not be a perfect fit, and must adapt.  Your challenge 

is sometimes choosing something imperfect and making it work. 
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than the overlapping one in the 

Misconception figure (Figure 1). 

This may sound distressing, but in reality, the 

lack of overlap in the IIoT space actually 

makes an architect’s task much simpler. The 

real problem is not choosing between similar 

options; it is understanding the different 

options and overcoming biases.  

The Industrial Connectivity Stack 

The Internet has well-developed layered 

stack models, most notably the OSI “7-layer” 

model and the Internet “4-layer” model. 

However, the IIC experts found that these 

models did not adequately capture the 

requirements of industrial networks. Thus, 

the IICF defines a new model, called the IIoT 

Connectivity Stack Model (See Figure 3).   

Both the Enterprise Internet and the 

Industrial Internet function by sharing data. 

However, industrial systems present 

different challenges than enterprise 

networks do. Most importantly, industrial 

systems combine complex, intimately 

interconnected software modules and 

devices. Interoperability between the 

various components is the most demanding 

requirement on the architecture. With crisp 

definitions of interoperability, the other 

requirements can be much better 

understood. The IIoT Connectivity stack 

shares layers 1-3 with the OSI model and 

defines levels 4 through 6 in terms of the 

interoperability provided. 

The layers focus on what is exchanged. At 

the network layer, participants exchange 

bounded-length packets of information. This 

is usually implemented by the familiar 

Internet Protocol (IP). 

Above it, the transport layer exchanges 

variable-length messages. Participants share 

opaque sequences of bytes. Participants using 

 
 

Figure 3: IIoT Connectivity Stack.  Below layer 3 “Networking”, the IIoT stack duplicates traditional Internet 

stacks.  Above, it focuses on clarifying the interoperability that industrial IoT systems need. 

https://en.wikipedia.org/wiki/OSI_model
https://en.wikipedia.org/wiki/OSI_model
https://en.wikipedia.org/wiki/Internet_protocol_suite
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this layer can share information, but 

interpretation of that information is 

completely up to the applications. This enables 

basic communications, but makes it difficult to 

interoperate between devices and software 

that is not designed together.  

The next layer, called the framework layer, 

adds structure to the data exchange. This 

allows components to understand how to 

process the messages, also called “syntactic” 

interoperability. Participants above this level 

can use different programming languages, 

operating systems, and processor 

architectures transparently. The framework 

layer also enables configurable quality-of-

services (QoS) like reliability, durability, 

filtering and more. QoS enables control over 

data delivery, including selecting information 

and endpoint delivery conditions. Together, 

these functions enable a “data model” for the 

system. The data model is the basis for diverse 

components to work together. Sophisticated 

implementations can even match some 

differences in data model, thus allowing a 

large distributed system to grow incrementally 

from parts that are not all developed or 

deployed together. Thus, syntactic 

interoperability is critical functionality for an 

industrial Internet. 

Once participants can exchange known 

structures, they must also know how to 

interpret the information, aka “semantic 

interoperability”. This is the responsibility of 

the distributed data interoperability and 

management layer. In the current state-of-

the-art, semantic definition is only practical 

within an industry. There are many standards 

that operate at this level, including the ICE 

(Integrated Clinical Environment) in the 

medical industry, OpenFMB (Open Field 

Message Bus) in the power industry, and 

others. Semantic interoperability is beyond 

the scope of the IICF and this paper.  

The Core Connectivity Standard 

Architecture 

The IIoT space is far too big to expect a single 

connectivity standard to span everything. 

Thus, to build an Internet, we will eventually 

need to connect subsystems based on 

different standards. 

The IICF does this with the concept of a 

“Core Connectivity Standard” (CCS). The CCS 

design eliminates the “N-squared” problem 

by choosing a few standards that together 

span the space and separately provide key 

functionality. The design simply defines the 

few standard bridges (called “core 

gateways”) between core standards. Other 

connectivity technologies can then interface 

to the system through any one CCS. This 

enables practical end-to-end data exchange, 

as shown in the Core Connectivity 

Architecture figure. 

This design enables a scalable, deeply 

connected future Industrial Internet of 

Things. Of course, it does introduce the 

question of what qualifies a standard to be a 

core standard. The IIC reasonably requires 

that a connectivity core standard shall:  

 Provide syntactic interoperability,  

 Be an open standard with strong 

independent, international governance 

and with support for certifying or 

validating or testing interoperability of 

implementations,  

 Be horizontal and neutral in its 

applicability across industries,  

 Be stable and deployed across multiple 

vertical industries,  

https://www.astm.org/Standards/F2761.htm
https://www.astm.org/Standards/F2761.htm
http://www.sgip.org/openfmb/
http://www.sgip.org/openfmb/
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 Have standards-defined Core Gateways 

to all other connectivity core standards.  

With that definition, the IIC experts 

proceeded to define criteria, survey 

standards and evaluate all the standards 

against those criteria. The criteria definitions 

alone are a huge contribution, beyond the 

scope of this paper. They resulted in an 

“Assessment Template” with deep analyses 

of the six standards with greatest IIoT 

traction: DDS, OPC UA, oneM2M, RESTful 

HTTP, MQTT, and CoAP. The assessment 

includes business, usage, functional and 

implementation viewpoints. It is a unique 

analysis of connectivity technologies for 

industrial systems. In the end, the IICF 

identified four of the six as potential core 

standards: DDS, OPC UA, oneM2M, and 

RESTful HTTP.    

Of course, this design targets a future world 

of vastly connected systems. There is a more 

immediate question: “if I’m starting an IIoT 

project, what should I use?” Next, we 

present the IICF guidance and a simple tool 

to navigate that guidance. 

 
Figure 4: Core Connectivity Architecture.  Each core connectivity standard requires a standardized core gateway to 

connect to the other core architectures. Other domain technologies can then interface to the system via any core 

standard. This design scales linearly with the number of technologies, thus enabling a true Internet. 

Few Core Standards
Standard Core 

Gateways

Many domain 
technologies
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CHOOSING A CONNECTIVITY 

STANDARD 

In one key table, the IICF outlines the 

example use cases and application spaces of 

the various core connectivity options. The 

intention, and the effect, is to provide useful 

guidance to architects struggling with the 

confusing arrays of vendor and advocate 

claims. The table is reproduced below in the 

IIC Use Case Examples figure. 

Let’s take this process a bit further. It is 

possible to ask a few very simple questions 

for each technology option and quickly 

narrow the choices. These questions may 

oversimplify the problem, but they are a 

great starting point. The IICF identifies four 

potential “core connectivity standards:” 

 
Table 8-2 Non-overlapping system aspect examples addressed by the potential IIoT connectivity core 

standards 

IIC Use Case Examples. The IIoT space is so big that the primary users of the different technologies 

don’t speak the same language.  In practice, there are few applications that could reasonably 

make alternative choices. The real problem in the industry is the lack of understanding of the 

options.  The IIC experts sorted the technologies into very clearly different “boxes”. The choice is 

nearly as simple as identifying which box most sounds like you. 
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DDS, OPC UA, oneM2M, and RESTful HTTP. 

We analyze these in this section. MQTT does 

not qualify as an IICF “core connectivity 

standard” because it does not have a 

standard typing system required for 

syntactic interoperability. We examine it 

nonetheless because it has wide awareness. 

DDS 

Here are five questions to answer to decide 

if you need DDS: 

1. Is it a big problem if your system goes 

down for a short time?  

2. Are milliseconds important in your 

communications? 

3. Do you have more than 10 software 

engineers?   

4. Are you sending data to many places, as 

opposed to just one (like to the cloud or 

a database)? 

5. Are you implementing a new IIoT 

architecture? 

If you answered three out of the five 

questions “yes,” you probably should use 

DDS.   

DDS is a series of standards managed by the 

OMG that define a databus. A databus is 

data-centric information flow control. It’s a 

similar concept to a database, which is data-

centric information storage. The key 

difference: a database searches old 

information by relating properties of stored 

data. A databus finds future information by 

filtering properties of the incoming data. 

Both understand the data contents and let 

applications act directly on and through the 

data rather than with each other. 

Applications using a database or a databus 

do not have a direct relationship with peer 

applications. 

The databus uses knowledge of the 

structure, contents and demands on data to 

manage dataflow. It can, for instance, 

resolve redundancy to support multiple 

sources, sinks and networks. The databus 

can control Quality of Service (QoS) like 

update rate, reliability and guaranteed 

notification of data liveliness. It can look at 

the data inside the updates and optimize 

how to send them, or decide not to send 

them at all. It also can discover and secure 

data flows dynamically. All of these things 

define interaction between software 

modules. The data-centric paradigm thus 

enables software integration.  

So how does this satisfy the five questions? 

1. Since it is directly controlling flow, a 

databus does not require servers. So, 

there’s no single point of failure. The 

downtime required to reboot a server 

and remake connections unexpectedly is 

never necessary. Without direct 

relationships with peers, redundancy is 

transparent. If the application is 

managing a thermostat, optimizing a 

plant, or assembling parts, a short 

downtime is not catastrophic. However, 

if the software is responsible for 

someone’s breathing or the stability of 

the power grid, even short interruptions 

cannot be tolerated. 

2. Since the databus has full control over 

how data flows, it can send information 

directly between peers. Thus, it can 

deliver in times measured in milliseconds 

or microseconds. DDS can use multicast 

intelligently when available. It knows 
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delivery deadline requirements and can 

measure if the system is meeting 

delivery times. So, it can warn 

applications if the network (or anything 

else) cannot handle the needed flow 

rates.  

3. Teams of programmers must control 

interfaces between modules. The 

databus specifies a full data model. All 

connectivity frameworks do this to some 

extent, but the databus specification is 

more expressive. It includes not only 

type information, but also QoS such as 

deadlines, sensor availability and flow 

rates. So, the interfaces are defined and 

then enforced at runtime. The databus 

can also manage the evolution of those 

interfaces, allowing modules, for 

instance, that use newer and older 

versions of an interface to interoperate. 

That is important for a practical, large 

IIoT system that must be incrementally 

deployed and updated.   

4. A databus controls flow between many 

complex applications. It handles a mix of 

fast and slow components. Its filtering 

can make the overall flow manageable. 

Peer discovery delivers data between 

multiple field-based components. And 

QoS control guarantees the flows. There 

are simpler solutions for one-way, one-

destination flows such as capturing 

sensor information to send it to the 

cloud for analysis. 

5. Finally, using a databus requires a 

completely new architecture. Most DDS 

designs are building something new 

rather than optimizing something old. 

The databus can integrate legacy 

subsystems via gateways and adapters, 

but it should not be considered an 

incremental design change. 

Most databus systems do not have all five of 

these properties. Three of the five indicate 

that a databus design will be compelling.  

OPC UA 

OPC UA is a standard managed by the OPC 

Foundation, also documented as IEC 62541.   

OPC UA targets device interoperability. 

Rather than accessing devices directly 

through proprietary application program 

interfaces (APIs), OPC UA defines standard 

APIs that allow changing device types or 

vendors. This also lets higher-level 

applications such as human-machine 

interfaces (HMI) find, connect to and control 

the various devices in factories. 

OPC UA divides system software into clients 

and servers. The servers usually reside on a 

device or higher-level Programmable Logic 

Controller (PLC). They provide a way to 

access the device through a standard “device 

model.” There are standard device models 

for dozens of types of devices from sensors 

to feedback controllers. Each manufacturer 

is responsible for providing the server that 

maps the generic device model to its 

particular device. The servers expose a 

standardized object-oriented, remotely-

callable API that implements the device 

model. 

Clients can connect to a device and call 

functions using the generic device model. 

Thus, client software is independent of the 

actual device internals and factory 

integrators are free to switch manufacturers 

or models as needed. So, OPC UA can build 

and maintain a system from interchangeable 
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parts, much like standardized printer drivers 

allow PC system integration. Note that the 

device model also provides a level of 

“semantic” interoperability, because the 

device model defines the generic object APIs 

in known units and specified reference 

points.   

Determine if you should use OPC UA by 

answering the following questions: 

1. Are you in discrete manufacturing? 

2. Must you connect to an Industrie 4.0 

system?  

3. Are you building a device that will be 

integrated by control or process 

engineers or technicians, rather than 

software engineers? 

4. Will your product be used in different 

applications in different systems, as 

opposed to one (type of) system where 

you control the architecture? 

5. Are you building equipment for a 

“workcell” or “skid?” 

Three “yes” answers to these five questions 

point strongly to OPC UA. Let’s look at how 

the technology fits these use case indicators: 

1. OPC UA is well-positioned for discrete 

manufacturing. These applications are 

characterized by integrations of devices 

into sets of tightly coordinated 

subsystems. Since users want to avoid 

vendor lock-in, a ready supply of devices 

with interchangeable device models is 

important.    

2. The German initiative Industrie 4.0 

recommends OPC UA. Industrie 4.0 is 

focused on manufacturing, in contrast to 

the IIC that works on IIoT technical 

system architectures across verticals. In 

a sound bite, Industrie 4.0 is about 

making things, while the IIC is about 

making things work. They intersect only 

in manufacturing systems. 

3. OPC UA provides more than 

connectivity; it also has pre-defined 

device models and a device integration 

architecture. Those using and choosing it 

usually target users who are plant or 

process engineers, rather than 

programmers. System integration in 

manufacturing is usually done between 

devices, not software modules. OPC UA 

has very helpful device models that aid 

interoperability between device 

manufacturers.  

4. OPC UA has a system discovery 

mechanism called an “address space.” 

This can be rolled up to a site-wide 

server, for instance and the system 

connected to a site HMI. This dynamic 

system building is very useful for 

providing similar functionality, such as 

historian storage or HMI viewing, to very 

different applications. It is appropriate 

where your users control the system 

design, not you.  

5. Most OPC UA systems end up in 

workcells or on process skids. These are 

a stand-alone subsystems, usually 

incorporating 20 devices or so. OPC UA, 

and especially the industrial-integration 

software that supports it, targets 

workcell integration. The address model 

and object-oriented nature directly 

support a hierarchy of these workcells. 

Users of the other standards rarely 

characterize their use cases as 

“workcells.”   
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OneM2M 

OneM2M provides a common service layer 

that sits between applications and 

connectivity transport. Its emphasis is on 

providing common services, on top of 

different connectivity standards. 

To determine if you should use oneM2M, 

consider these questions: 

1. Do you know what “ICT” stands for and 

does it describe what you do? 

2. Is the cellular network your primary 

connection technology? 

3. Are your target applications largely 

composed of moving parts? 

4. Can the components of the system 

tolerate intermittent connections and 

loosely-controlled latencies? 

5. Will the system leverage services 

provided by a communications provider 

such as a telco? 

These questions differ in character from the 

questions about the previous technologies. 

OneM2M results from cooperation among 

many mobile wireless providers. It targets 

networks of mobile devices that 

communicate mostly or only through the 

base-station infrastructure. 

The following points examine why oneM2M 

is implied by these questions: 

1. Surprisingly, most target users of DDS 

and OPC UA cannot even correctly define 

the name of oneM2M’s target industry 

as Information and Communication 

Technology (ICT). There are, of course, 

exceptions. But, if you consider yourself 

in the ICT industry, then you need to 

consider OneM2M: It was designed for 

you. 

2. The core design of oneM2M is to define 

services that mobile devices can use to 

cooperate and integrate. If you are going 

to use those services, you need to 

connect to them. They will be running in 

the platform layer (cloud) connected 

mostly through the cellular data 

infrastructure. Other technologies also 

use IP traffic over the cell network, but 

they usually also heavily leverage LAN, 

local wireless or WAN networking 

technologies in their designs. 

3. There is a potential future market for 5G 

wireless integration of fixed assets such 

as manufacturing cells. However, this 

technology is still years away. oneM2M 

performs best for mobile assets. One 

especially powerful aspect is that 

oneM2M abstracts differences in 

protocols to those devices. Thus, it can 

integrate different ways to connect to 

similar devices. 

4. Cellular mobile systems are not reliably 

connected. Thus, applications must not 

fail when communications are offline for 

a few seconds or minutes.   

5. oneM2M system designers assume a 

cloud backend in their designs. The core 

of oneM2M is the standard services layer 

that is provided by a telco or its partners. 

RESTful HTTP 

REST (Representational State Transfer) over 

HTTP is the most common interface between 

consumer applications and web services. 

REST is an architectural pattern for accessing 

and modifying an object or resource. One 

server usually controls the object; others 

request a “representation” and may then 

send requests to create, modify or delete the 

object.   
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To see if RESTful HTTP is the best candidate 

for your application, ask these questions: 

1. Are you connecting independent devices 

to a single web service API? 

2. Are you building an HMI interface to an 

IoT device or service? 

3. Does your application only need to be 

fast enough for human interaction? 

4. Must your dataflow cross firewalls that 

you do not control? 

5. Is there no device-to-device 

communication? 

Three “yes” answers indicate you will likely 

be best off with RESTful HTTP. The reasons: 

1. RESTful HTTP fundamentally makes it 

easy to connect a field device to a web 

service. REST is the most widespread way 

to build web services, enabling copious 

offerings to help developers. For 

instance, the DreamFactory open source 

project automatically creates APIs from 

most any database, thus enabling a 

centralized data-centric approach. 

While most applications use hypertext to 

present a linked view of a web page to a 

user, this paradigm is also similar for 

many IIoT “monitoring” applications. 

These applications are similar to smart-

phone apps, except there is no human 

user. Instead of a phone, the end entity 

is a “thing,” typically a single device. 

From a connectivity perspective, the 

things usually have only a single 

connection to an IoT platform. This 

category includes most of the 

“consumer” IoT, including thermostats, 

wearables and smart home locks.   

The most important industrial 

applications are “predictive 

maintenance” systems that upload 

device data to the cloud. Cloud systems 

then analyze the data to predict when a 

part may fail, allowing proactive repair.  

2. HTTP is the most common way to serve 

information to human users. While most 

think of HTTP servers as living in the 

cloud with clients on the edge, this often 

is not the case in IoT. The server often, in 

fact, runs on the device itself, providing 

an intuitive configuration and 

management interface. Browsers can 

simply connect directly to the device, 

giving full access to advanced visual 

capabilities. This is limited to local 

connections, so another common 

configuration is to combine this with the 

above by having both the device and the 

user connect to a cloud-based HTTP 

service. This allows easy remote access 

to the device. 

3. RESTful HTTP is an approach, not a 

standard with an official type system. 

However, most web systems use text 

encodings like JSON or XML. Text 

encoding is not fast so response speeds 

may satisfy humans, but not fast 

machines. Binary systems like Google 

Protocol Buffers (Protobuf) and the new 

HTTP/2 standard offer more efficiency, 

but are not yet widely used. HTTP runs 

over TCP, which does not deliver low 

latency. 

4. Because all websites offer HTTP services, 

most IT firewalls allow connections to 

HTTP’s default port (80). Deep packet 

inspection systems will likely accept 

HTTP. Thus, using HTTP on port 80 is 

usually the easiest way to traverse 

firewalls without special configuration. 

https://www.dreamfactory.com/
https://www.dreamfactory.com/
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5. RESTful HTTP requires that all devices 

connect to a server. While multiple 

devices may interact through that server 

or share a database, applications that 

share data between devices are rare.  

MQTT 

MQTT is a very simple protocol designed 

mostly for the “data collection” use case. It 

does not qualify as a “core connectivity 

standard” per the IICF guidelines, because it 

has no standard type system. Without a type 

system, it cannot offer a standard ability to 

interoperate at the “syntactic” data-

structure level, leaving all data 

interpretation to the application. 

Nonetheless, MQTT enjoys significant 

awareness. Because of its simplicity, simple 

questions about your system will help 

determine if it is appropriate: 

1. Do you think of your application as data 

collection? 

2. Is there little device-to-device 

communications? 

3. Is interoperability not a consideration? 

4. Do you have many small devices? 

5. Is software a minor challenge? 

Again, if you answer three or more of these 

“yes,” you should look at MQTT. The 

reasons: 

1. The first “T” in MQTT stands for 

“Telemetry,” or data collection at a 

distance. This is its main use case. 

2. MQTT is designed as a hub-and-spoke 

design that requires a broker. It does not 

support direct inter-device 

communications. Choosing MQTT for 

device-to-device communications is 

awkward. 

3. Without a type system, MQTT 

applications are tightly coupled – they 

must all be aware of the data format. The 

only way to build interoperability is to 

implement a way to share types in user 

code. As a result, most of all MQTT 

applications are standalone systems. 

MQTT also does not help with system 

evolution; version compatibility 

between components must be provided 

by the applications. 

4. MQTT is by far the simplest technology 

considered here. If you have many small 

devices that are simply connected, 

simple software can handle your 

challenge.   

5. MQTT offers little to ease software 

development. There is only one QoS 

setting (reliability). There are no defined 

services. It offers no data or device 

modeling. You are therefore going to 

have to write all of the software from 

scratch; that is only practical if you have 

a simple software challenge. 

Comparisons and Overlaps 

Comparing these technologies highlights the 

stark differences and non-overlapping 

nature of connectivity approaches.   

For instance, OPC UA is object oriented (OO), 

while DDS is data centric. Those are 

diametric opposites. The OO mantra is 

“encapsulate data, expose methods.” Data 

centricity is all about exposing data and 

there are no user-defined methods. The only 

methods are defined by the standard. 

OO systems work like a sequential 

programming language. You “call a method” 

on a remote server, it returns. Then you call 

the next. It is simple and intuitive for getting 
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and setting values. However, it is difficult to 

call many methods in parallel. The new OPC 

UA “pub/sub” functionality retains this 

flavor. Applications fundamentally interact 

with active remote peers. The paradigm is 

sequential reading and writing device values 

or streams, organized as a larger “address 

space.”   

Software systems built with OPC UA are 

typically compositions of existing modules 

like historians and HMIs. Direct OPC UA 

users are mostly device vendors. End OPC 

UA users are typically control or process 

engineers building and configuring systems 

of devices and existing software modules. 

OPC UA does not offer software teams 

integrating custom software help with 

complex interfaces that need a common 

system data model.   

DDS, on the other hand, directly supports 

large custom software integrations. It 

explicitly requires a system data model and 

then uses that to automatically enforce 

interfaces. It works well for building and 

integrating AI modules, custom software 

development and wide data distribution. 

Everything is redundant and massively 

parallel. Most DDS end users are teams of 

programmers with dozens or even 

thousands of developers. DDS frustrates 

non-programmers who want to quickly 

integrate devices without much new 

software.   

Thus, DDS and OPC UA target vastly different 

users. For OPC UA, end-user teams with 

more than a few programmers are rare. DDS 

is the opposite; most end-user teams have 

many programmers. That results in vastly 

different market penetration, depending on 

the integration challenge. For example, most 

OPC UA applications are in discrete 

manufacturing, while DDS has essentially 

none. That’s because discrete 

manufacturing systems today are built via 

device, rather than software, integration. 

Similarly, MQTT applications mostly target 

data collection from devices to a central 

store or analysis function. This is a rare 

application for either OPC UA or DDS, which 

work between devices. Also, oneM2M works 

by offering common services aimed at 

integrating mobile devices. None of the 

other technologies target this application. 

THE FUTURE 

Combinations of the core standards will 

make great sense in the future. For instance, 

future complex software systems can use 

DDS, but access interchangeable OPC UA 

devices through a gateway. That design is 

powerful. 

The IICF specifies an architecture for sharing 

data across connectivity technologies to 

allow this future, pervasive Industrial 

Internet. IIoT use cases are evolving from 

simple monitoring to optimization and 

finally to autonomy. These increasingly 

require more powerful integration. 

Today’s IIoT designs are relatively isolated 

within industries. Someday, there will also 

be cross-industry integrations, such as 

manufacturing systems integrated with 

transportation and power. More 

importantly, sophisticated autonomy 

software will reconfigure workcells, creating 

a bold new world for component device 

vendors. Wireless 5G systems will 
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interoperate with freeway controllers and 

autonomous vehicles. 5G may even directly 

control factory devices, eliminating wiring in 

manufacturing. 

However, designers should consider the 

vastness of the space. Today, there are few 

concrete needs to bridge the huge gaps 

between connectivity systems. That doesn’t 

mean the industry is not responding to the 

obvious need. Gateway standard efforts are 

active between all the core connectivity 

standards. A recent demonstration at an IIC 

testbed shows a bridge between DDS and 

OPC UA. Long term, these integrations will 

allow bigger systems combining 

technologies. For now, designers must 

understand the vast differences between 

connectivity standards and choose the one 

that best fits their problem space.  
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