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1 OVERVIEW 

Internet of Things (IoT) device density/volume is the new Distributed Denial of Service (DDoS) 

risk for 5G. The utilization of cloud and edge computing, as well as the convergence of mobile 

and traditional IT networks, results in the creation of powerful new attack vectors for IoT 

applications and networks. The challenge is to convert the risk of high-volume IoT attacks to an 

opportunity to observe and steer a larger sample of IoT devices and nodes involved in potential 

attacks. An additional challenge is to convert complexity, of distributed networks, to additional 

DDoS detection and countermeasure horsepower.  

Another key challenge is to convert radio network complexity and DDoS vulnerability to even 

more powerful DDoS detection and countermeasure horsepower. Diversified DDoS detection 

and countermeasures are therefore crucial for IoT applications and the networks that host them. 

Emerging technologies, such as blockchain and smart contracts, enable the fully distributed and 

automatic exchange of attack information. This paper investigates how 5G radio networks and 

blockchain can be used in tandem to provide an additional layer of protection against IoT DDoS 

attacks. 

1.1 INTRODUCTION1 

The challenge of detecting DDoS attacks is not entirely new, but when high IoT device density is 

considered, the scale and associated automation needs are. We propose a step-by-step approach 

for DDoS detection as described below: 

• Sensing: We must first identify which measurement points and metrics can reveal a 

potential DDoS attack. Examples include UE trace and/or billing records, radio eNB / gNB, 

MME / AMF for control plane sensing, and PGW / UPF for user plane sensing.  

• Baseline state models: We must next build models which represent "normal" or non-

anomalous UE and network states, observe-able by sensing, that exist before the DDoS 

incident. Examples include UE volume / attach / tracking area update per hour, radio 

uplink noise, RACCH occupancy, MME / AMF attach / tracking area update per attached 

UE / hour, and PGW / UPF data volume per connected UE.  

• Network and UE anomaly detection: We must next begin with a means to detect an 

abnormal condition, which may or may not be DDoS, from available UE and network 

sensing data which is out of alignment with baselines. Anomaly examples include uplink 

noise, signaling, and/or user data traffic volume spikes compared to baseline.  

 

1 U.S. Patent pending No. 63/307,519. 
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• Network and UE anomaly classification: Once detected, anomalies must be classified 

prior to causal inference and other steps. This classification is needed in order to narrow 

relatively broad, and compute expensive, causality inference actions to a manageable set. 

Sensed data patterns are temporal, spatial and distribution clues that suggest an optimal 

path for causality inference.  

• Network and UE causality inference: The combination of network and UE anomaly 

classification should be used to initiate/instantiate a targeted causality inference path.  

• Network countermeasures and remedial actions: Once classified, UE and network DDoS 

causes must be addressed via countermeasures and remedial actions. If coordinated / 

coincident UE signaling actions are observed, then appropriate countermeasures must be 

instantiated to steer these UE down a network path which limits their impact on the 

upstream network and legitimate UE. In this case, a desirable outcome may be for the 

anomalous UE to impact or deny service to each other, thus using the high density of 

DDoS IoT devices as an enabler, versus challenge, to a powerful DDoS defense 

mechanism. Next, additional spatial classification, using geolocation techniques, should 

be used to identify the presence or absence of DDoS device clusters. Additional remedial 

actions, including automated over-the-air software updates, may be used to further 

identify, repair, impair or completely disable DDoS devices. Finally, proactive actions must 

be taken to prevent DDoS UE from impacting additional networks after detection. These 

countermeasures and remedial actions should all be designed to mimic normal or DDoS-

impaired conditions that are difficult for IoT devices to detect or counter. 

1.2 STRUCTURE 

The document is organized as follows: 

• Chapter 2 – Motivation 
• Chapter 3 – Distributed DDoS Attack Detection 
• Chapter 4 – DDoS Countermeasures 
• Chapter 5 – Summary and Next Steps 

1.3 TERMS AND DEFINITIONS 

The following terms and definitions that are key to understanding this document are: 

• 5G – Fifth-generation technology standard for broadband cellular network 

• AMF – Access & Mobility Management Function 

• ARFCN – Absolute radio frequency channel Number 

• DDoS – Distributed Denial of Service 

• DIU – Data Interface Unit 

• DTW – Dynamic Time Warping 

• EARFCN – E-Ultra Absolute Radio Frequency Channel Number 
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• Edge-IoT – Point where data is collected, sensing is done for Internet of Things device 

• eNB – Base stations in 4G LTE networks 

• gNB – 3GPP 5G next-generation base station supporting 5G 

• HMM – Hidden Markov Models 

• IMEI – International Mobile Equipment Identity 

• IoT – Internet of Things 

• KPI - Key Performance Indicators 

• LTE – Long-Term Evolution 

• MEC – Multi-access Edge Computing 
• MME – Mobility Management Entity 

• PGW – Packet Data Network Gateway Technology 

• RACCH – Random Access Control Channel 

• RACH – Random Access Channel 

• RAN – Radio Access Network 

• RL – Reinforced Learning 

• RRC – Radio Resource Control 

• SINR – Signal to Interference Plus Noise Ratio 

• Slice – Independent end-to-end logical network 

• STFT – Short Time Fourier Transform 

• UE – User Equipment 

• UPF – User Plane Function 
• Uplink – Part of the communication link signal 

2 MOTIVATION 

By 2027, IoT devices are expected to outnumber mobile phone devices by a factor of nearly 4 to 

1.  Through efficiency and capacity upgrades, 5G IoT devices and radio networks are likely to 

absorb a large portion of this demand rise. While the radio interface will eventually become less 

of a bottleneck for legitimate IoT device and traffic volume growth, it may also pass on a greater 

number of illegitimate IoT DDoS attack traffic to upstream network nodes and IoT platforms. 
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Figure 2-1: IoT connected device forecast. 

Most IoT devices lack a user interface to observe UE behavior, accept software updates and other 

human-enabled oversight applied to mobile phones. This, plus the sheer number of IoT devices, 

drives the need for mechanized IoT device management platforms. Such automation enables 

scale but presents a risk if a single compromised device management platform can rapidly deploy 

faulty or malicious software to a massive number of IoT devices.  

Legacy DDoS detection, countermeasure, and mitigation mechanisms, designed for mobile 

phone networks, will therefore be unable to handle the pace and intensity of automated IoT 

DDoS attacks. The risk of such massive automated IoT DDoS attacks drives the need for 

intelligent, automated network DDoS detection, countermeasure, and mitigation mechanisms.   

2.1 MOTIVATION FOR THE USE OF RADIO, MACHINE LEARNING AND BLOCKCHAIN 

TECHNOLOGIES 

Much progress has been made with DDoS detection and countermeasures for traditional IP 

networks. We aim to address incremental vulnerabilities and opportunities associated with DDoS 

attacks over wireless networks serving IoT devices. Traditional DDoS detection mechanisms (for 

example ieeexplore.ieee.org/document/9246616: April 2021) detect and classify DDoS through 

IP flow observation from a central cloud platform connected to network core nodes. As wireless 
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network flows become more distributed, to satisfy IoT performance and scale requirements, they 

also become more difficult to monitor from a central cloud platform. Central IP flow 

transportation and processing, for DDoS detection, will be difficult to scale and secure.    

Distributed, blockchain-based DDoS detection and defense approaches (for example 

https://hal.inria.fr/hal-01806063: Jul 2017) propose use of Blockchains to detect and report 

DDoS via Smart Contracts deployed at various distributed network nodes along the IP path to the 

victim server. These methods certainly address some of the aforementioned user plane IP flow 

transportation and processing scale-ability and security concerns, but they do not observe 

cellular network radio and control plane DDoS attacks. 

Traditional and proposed DDoS defense mechanisms, including the central and Blockchain 

distributed examples described above, suggest detection and mitigation mechanisms that 

address and defend against DDoS attacks of servers through an instrumented IP network. These 

traditional defense mechanisms, including IP blacklisting, packet dropping and connection 

rejection, protect the victim server, but they fail to protect the network radio or control resources 

along the path. Section 5 describes scenarios where some traditional defense mechanisms may 

exacerbate / amplify network radio and control resource attacks.   

In summary, we aim to fill gaps in existing detection and countermeasure mechanisms that lack 

the scale and radio awareness to address the wireless IoT DDoS threat. Our solution includes 

radio and Blockchain DDoS detection techniques that complement radio countermeasure 

techniques.  

3 DISTRIBUTED DDOS ATTACK DETECTION 

During an IoT DDoS attack, potentially massive number of IoT devices initiate an abnormally high 

volume of various transactions towards a destination. These excess transactions may 

intentionally or unintentionally cause congestion and instability at the destination and / or 

various intermediate nodes and interfaces along the path between the origin (radio) and the 

destination (server). We propose a distributed detection approach that yields DDoS detection 

alerts closest to the source(s) and time of attack.   

3.1 RADIO DDOS DETECTION 

All wireless IoT transactions, legitimate and illegitimate, begin with radio network access. Each 

radio network access attempt includes IoT UE uplink radio transmissions that yield useful signal, 

for the intended transaction, and noise interference for all other transactions sharing the same 

cellular frequencies. IoT DDoS attacks may lead to a rise in uplink noise in the serving cell, but not 

in the neighboring cells nearby.  

This is because high-volume, low cost IoT devices typically have low transmitter and battery 

power and are more effective for DDoS attacks close to the victim cell site. Legitimate UE traffic 

is typically dispersed over larger areas between multiple cell sites. If the noise is from typical 

https://hal.inria.fr/hal-01806063
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legitimate traffic, the neighbor cells are also likely to experience a similar rise in uplink noise. In 

the case of a DoS attack, the noise rise is local to that cell under consideration only, with minimal 

environmental impact. The same is depicted in Figure 3-1, with average interference of the 

primary cell (in red), the average SINR of the primary cell (blue), and the average interference of 

the first neighbor (green).  

It can be seen that the rise in uplink noise of the primary cell follows a pattern very similar to that 

of its neighbors and can be seen for most of the days – this is clearly due to typical legitimate 

traffic. On the second day, the rise in noise exceeds that of the neighbors and there is little or no 

environmental impact. Here, we observe the following: 

a) Uplink noise is low and similar to neighbor cells most of the time 

b) There are traffic-dependent spikes in uplink noise that are higher than neighbor cells, and 

c) Uplink SINR drops do not correlate with uplink noise rise at neighbor cells, i.e. it is local 

traffic-dependent noise with no environmental impact 

d) Some connected UE exhibit signaling and/or user data volume patterns  that correlate 

with the uplink SINR patterns of the attacked cell. These UE are classified as DDoS 

perpetrators.  

Hence, it is possible to conclude that the uncorrelated noise is from DoS. We propose time series-

based anomaly detection to detect the same, as discussed below. 

The data for this work was obtained from 50,000 cells collected from a customer LTE network. 

The Key Performance Indicators (KPIs) were collected at every 15 minutes. The KPI that is 

primarily used for this work was Radio interference in the control and shared channel for each 

cell and it’s 3 neighbors. The neighbors were decided based on the number of handovers or using 

the cell latitude/longitude.  

 
Figure 3-1: Rise in Uplink noise due to DoS may not have an impact on the neighboring cells. In blue is 
SINR of primary cell, and in red the interference of primary cell. In green, is shown the interference of 

the first neighbor. 

3.2 ENSEMBLE-BASED APPROACH 

For radio DDoS detection, we must exploit temporal and spatial observations from multiple radio 

nodes. We propose an ensemble of time series-based machine learning and signal processing 

approaches, that can automatically identify DoS in real-time, by analyzing Key Performance 
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Indicators (KPI) of the primary cell and its nearest neighbors. We validate our results for various 

environmental conditions in data available from LTE and 5G consumer networks. We propose a 

combination of: 

a) Time series distance-based measures, such as Dynamic Time Warping (DTW), 

b) Frequency domain-based measures or generalized (uniform or non-uniform) filter-bank 

based approaches, such as Wavelets and Short Time Fourier Transform (STFT), and 

c) Sequence model-based measures, such as Hidden Markov Models (HMM). 

The block diagram of our approach is shown in Figure 3-2.  

We further have extended the work to multi-frequency time series, by using Fourier Feature 

Mapping to handle finer time granularities and detect DoS anomalies in an online learning 

setting.  

 
Figure 3-2: Block-diagram of the ensemble-based approach for time series ensemble-based 
approach for network anomaly detection under DoS attacks. 

3.3 SELF-SUPERVISED LEARNING-BASED APPROACH 

We further propose a self-supervised reinforcement learning approach to predict DoS-related 

anomalies before they occur. Such predictions may, for example, observe the leading edge of a 

large-scale IoT DDoS attack, and initiate countermeasures before the entire local population of 

IoT devices join the attack. We forecast environmental conditions that give rise to DoS based on 

offline historical data and models that predict future occurrences. T 

These approaches were tested on customer LTE data for 50,000+ cell sites. The Key Performance 

Indicators (KPIs) were collected at every 15 minutes. As a DDoS attack is correlated to a rise in 

uplink noise in the primary cell, and not in the neighbors as described above, we mark the rise in 
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uplink noise as an anomaly. The block diagram of the self-supervised anomaly detection from 

uplink noise rise is shown in Figure 3-3. 

 
Figure 3-3: Block diagram of the self-supervised approach for anomaly detection from uplink noise rise. 

We can then formulate the next occurrence of an anomaly as a Markov Decision Process (MDP), 

where state, action, and rewards are as described below: 

a) State: In our case, the state is the quantized values of sequential interference that the cell 

is experiencing. Higher interference could lead to call drop, service degradation, etc. 

b) Action: Actions are quantized interference values that led to a positive affirmation of the 

presence of an anomaly. 

c) Reward: The reward can be defined as per domain knowledge. Reward is dependent on 

Radio Access Networks (RAN) KPI values and their thresholds. Some of the important RAN 

KPIs that we have considered identifying anomalies are CDR (call drop rate), CSSR (call 

set-up success rate), HSR (handover success rate), TCH (traffic channel congestion rate), 

call completion rate, speech quality index & signal strength. e.g., if the signal strength is 

below threshold i.e., signal strength is not falling between the required dBm range then 

reward will be positive as interference leads to poor signal strength.  

Depending on the “action”, the reward can be either positive or negative. Reward is positive if 

interference is observed and negative if there is no interference at that state. For example, it is 

known that anomaly will be prominent for cells to experience higher traffic. So, traffic could be a 

trigger to give more reward. To promote recommendation diversity, in addition to traffic other 

factors that can be considered, include but are not limited to, path loss, time of the day, etc. The 
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RL-agent then tries to maximize the expected cumulative reward. In this learning setup, the self-

supervised Q-learning loss is defined as a cross-entropy loss. The cross-entropy loss is used to 

rank the sequence of events to a binarized indicator of the occurrence or absence of the 

anomalous event. This cross-entropy loss measures the performance of a classification model 

where the output may be a probability value between 0 and 1. For example, an anomaly may be 

a 1, and a non-anomaly may be a 0. Then, via a neural network, may now generate probability 

values between 0 and 1, to match the training data. If a value is 0.02 at a place where it is 1, it 

may give a high loss value. A perfect model may have the cross-entropy loss to be 0, that is, e.g., 

that the 1 may be predicted as 1. The self-supervised reinforcement learning module may then 

learn patterns in the data that may potentially give rise to local anomalies. 

For the actor-critic variation, the self-supervised head is the “actor”, and the Q-learning module 

is the “critic”. The self-supervised learning network may be used to determine which factors to 

give more weightage to in the predictive model. Factors or features are combinations of variables 

that may give rise to an anomalous event, e.g., combinations of KPIs, such as interference, load, 

atmospheric conditions, etc. The training loss of the approach versus the epochs is shown in 

Figure 3-4. 

 
Figure 3-4: Decreasing loss of the self-supervised actor-critic method for anomaly detection. 

3.4 ANALYSIS AND RESULTS 

Based on the above modeling, experimental results from this real-world dataset have been 

shown to accurately predict noise rise 60% of the time, before it is strong enough to deny service. 

This ensures that we can instantiate other anomaly detection, causality, and countermeasures 

before the IoT DDOS has achieved full effect. To the best of our knowledge, this is the first work 

where DDOS anomalies are predicted and countered before they occur.  
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3.5 CORE DDOS DETECTION USING BLOCKCHAIN 

Beyond the radio, IoT transactions disperse between control and user plane core nodes along the 

path from the IoT device to the server. Each IoT transaction involves multiple network control 

plane nodes, that manage IoT device to radio network coordination, and network user plane 

nodes, that manage IoT device to server data packet transportation. These core nodes are 

interdependent DDoS victims and detection points.  

 

Figure 3-5: High-level IoT network topology. 

As is true for radio, core node DDoS detection must exploit temporal and spatial observations 

from multiple core nodes. Sensing data must be compared at multiple nodes (including virtual 

functions and their host locations) in order to determine if anomaly trends occur at the same 

time, with perhaps different intensities. If yes, then common spatial and morphology factors, for 

example overlapping or adjacent coverage areas and host locations, must be identified. If no, 

then node-specific indications, including metrics and alarms, should be observed for temporal 

correlation to the anomaly condition.  

Such observations should lead to a distributed or local network anomaly classification. From the 

UE / subscriber perspective, sensing data must be analyzed to determine if network-observed 

anomalies correlate with signaling spikes for a single UE or multiple UE with something in 

common. Such observations should lead to a distributed or unique anomaly classification or some 

sort of distribution factor shades between "black" and "white".  
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If network and UE anomaly classifications are distributed, then network and UE sensing data must 

be observed for temporal relationships to determine if a large number of UE affected a large 

number of network nodes (DDoS), or a large number of network nodes affected a large number 

of UE (network failure).  

If network anomaly classification is local and UE anomaly classification is distributed, then an 

inverse correlation study of UE sensing data can determine what is different, for example, virtual 

RAN and core network functions and hosting locations, between UE with and without anomalous 

behavior in the same RAN area. If network anomaly classification is distributed, and UE anomaly 

classification is relatively unique, then UE sensing data should be observed for coincident 

behavioral patterns of multiple UE. For example: 

a) Do all anomalous UE exhibit signaling spikes at the same time on different virtual core 

nodes connected to the same RAN?  

b) What happens to the signaling volume of non-anomalous UE on the same RAN nodes as 

anomalous UE?  

c) What is the difference between the anomalous and non-anomalous UE 

(subscription/slice, IMEI range indicating hardware)?  

d) What is common between the anomalous UE? For example, do they all change cells at 

the same time, indicating the presence in a common vehicle, etc. 

Layers of anomaly classifications and causal inference should lead to targeted UE or network 

remedy actions.  

The challenge is to observe and act on data, from all the distributed core nodes, without creating 

an unmanageable amount of data collection, transportation, privacy and compute overhead. 

Blockchain is a new technology that records and maintains transactions in a verifiable and 

permanent manner using decentralized and open ledgers that can be updated from multiple 

nodes along a network transaction path. 

A smart contract is a computer program that is executed in a secure environment that directly 

monitors and controls digital assets. A smart contract can be configured with rules that update 

records when specified conditions are met at nodes along a network transaction path. 

As shown in Figure 3-6, when applied to the IoT DDoS use case, blockchain records and smart-

contract-initiated updates can be used to track device behavior and network impacts, and 

therefore provide an efficient data source for DDoS anomaly detection, countermeasure, and 

mitigation functions, from each intermediate node. Compared to traditional probing, packet 

inspection, and data caching techniques, this blockchain approach is better suited for the privacy, 

scale, and speed of IoT networks. 
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Figure 3-6: The process used for Smart Contract recording DDOS threats and countermeasures. 

Applied to control plane nodes, blockchain smart contracts can observe and alert anomalous UE 

detach, reconnect, paging, location update, and re-establish behaviors that indicate control plane 

DDoS attacks. Applied to user-plane nodes, blockchain smart contracts can observe and alert 

anomalous packet flow volume and activity patterns that indicate user plane IoT DDOS attacks. 

When combined from multiple nodes serving the same devices, blockchain smart contract 

reports can be observed for temporal and spatial patterns that can point to the presence, origin, 

and destination of DDoS attacks. Application of blockchain records and smart contract induced 

updates to IoT DDoS use cases provides an effective distributed data source for DDoS anomaly 

detection, countermeasure, and mitigation functions. Blockchain-based solutions are better 

suited to IoT networks than classical probing, packet inspection, and data caching techniques 

because the raw data and rule computations are handled at the distributed nodes. 

Opportunities include: 

(1) Distributed nodes that are scattered. The transition from centralized cloud computing to 

decentralized Edge computing is well-suited to the decentralized Blockchain. Running Blockchain 

among distributed nodes has the potential to enable safe data sharing, tracking, and validation 

for large-scale IoT applications. As DDoS packets (user data or signaling data) traverse multiple 

distributed edge and internal nodes and interfaces, they can be observed and selectively 

identified by smart contracts at each distributed node. This is analogous to trapping fish at the 

incoming stream, versus angling the entire lake. When compared to centralized commercial 

clouds, the operational expenses of Blockchain and smart contracts could be greatly lowered.  
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(2) Interaction between IoT devices and distributed nodes. Many problems with IoT devices can 

be solved using blockchain and smart contracts. If / when DDoS attacks are successful, they may 

create logjams (extra transaction volume and latency) at impacted nodes and interfaces. If these 

nodes and interfaces each have smart contracts with transaction volume and latency rules, then 

we'll get reports on when and where the logjams occur. Sensing DDoS anomalies at the source 

is, therefore, more time and cost-efficient than mining anomalies from a central data lake.  

(3) Resistance to IoT cyberattacks. IoT devices typically lack the resources or capabilities to 

perform full-fledged security processes in the face of threats. - Lightweight security approaches 

may be useful, but they are still in their infancy. Hackers will find it far more difficult to disrupt 

the Blockchain without having enough CPU power to outrun the combined CPU power of the 

entire network and without being discovered with Blockchain and decentralized ledgers. Node 

based Smart contracts also allow IoT devices to define agreements on specific actions, behaviors, 

and results, allowing hackers' anomalous conduct to be spotted, detected, and reported 

automatically. Furthermore, with the trusted Blockchain, it is feasible to set a "zero-trust" policy 

in the distributed network, which might monitor all network transactions and aid in the detection 

of strange behaviors, potential misuses, and assaults. Without being noticed and stopped, lateral 

moves from the hackers to the attacking targets will be far more difficult. 

4 DDOS COUNTERMEASURES 

Deception-based defense is an effective cyber defense strategy which employs a variety of 

techniques to deceive, perplex, and apprehend dangerous hackers. Address hopping, network 

telescopes, and honeypots are examples of common methods. Radio networks are vulnerable, 

yet uniquely equipped to locate and apply covert radio countermeasures for IoT DDoS attacks.   

4.1 DDOS LOCATION FINGERPRINTING 

Numerous radio DDoS mitigation and remediation procedures can be targeted at specific 

locations and cell sites. This targeted strategy will be enabled by the location fingerprinting of 

DDoS UE and the possibility of "swarms" of DDoS UE. While active, all cellular UEs adjust their 

uplink transmit burst timing to align with the frame structure of the serving cell site receiver.  

As each UE moves further away, uplink transmits bursts take longer to reach the cell site. When 

the reception is delayed beyond a threshold, the cell site commands the UE to increase the timing 

advance value, thus sending uplink bursts sooner to overcome the additional delay. Each timing 

advance increment represents a 78M distance between the UE and cell site.  

When classified as DDoS, the timing advance value can be used to geolocate the perpetrator UE 

within a 78M band around the known cell site location. When there are handovers between two 

cell sites of known location, the old (before handover) and new (after handover) timing advance 

values can be used to narrow the location estimate even further. If there are handovers between 
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three or more cells in a constellation, as per cells 1, 2, and 3 below, the location estimate can be 

reduced to a 78M diameter circle.  

If multiple DDoS perpetrator UEs affect the same cell site at the same time, they may be clustered 

together in a van or building that can be investigated by law enforcement. In this case, a time 

series of cell site and timing advance changes can be observed and compared for each suspect 

DDoS perpetrator UE. If cell site and timing advance changes for multiple DDoS perpetrator UEs 

coincide, then these perpetrator UEs are likely in the same moving vehicle or building.  

If suspect DDoS perpetrator UEs are stationary for a considerable time, then the radio network 

can force handovers while observing timing advice values between neighboring cells in a 

constellation such as C1, C2, and C3 in Figure 4-1 below. 

This technique can also be enhanced by the angle of arrival data where beamforming radios are 

deployed. If all perpetrator UEs align with the same 78M diameter circle, they, and their operator, 

are likely in the same location.  

 

Figure 4-1: Timing Advance (TA) for DDoS location fingerprinting. 

4.2 COVERT RADIO COUNTERMEASURES FOR DDOS 

In Section 3.1, we describe radio noise pattern observation as a means to detect and classify the 
presence of over-the-air DDoS attacks and perpetrator UEs from cell sites. In Section 3.2, we 
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describe use of Blockchain Smart Contracts to detect and classify control and user plane DDoS 
attacks from network core nodes. In Section 4.1, we describe timing advance observation to form 
a location fingerprint for perpetrator UEs involved in over-the-air DDoS attacks. The next 
challenge is to minimize or preferably eliminate the DDoS impact of IoT devices classified and 
localized as perpetrator UEs in a specific area. As per Figure 4-2, DDoS attacks may target one or 
many networks, platforms, applications, or service victims.   

 
Figure 4-2: IoT security threat environment. 

Considering the variety and the sheer number of IoT devices and DDoS victims, it is relatively 

impractical and/or ineffective to apply countermeasures and mitigation at all endpoints and 

intermediate nodes. Some intermediate node mitigation techniques may even exacerbate DDoS 

impact for other nodes in the network. For example, packet core nodes may selectively drop 

packets for DDoS perpetrator flows, thus rate-limiting the DDoS impact to upstream nodes in the 

core, internet, and IoT platforms.  

This kind of overt countermeasure action will trigger an even more damaging reaction, packet 

retransmission, from the perpetrator UEs. Packet retransmission will amplify the radio noise and 

congestion that triggered DDoS countermeasures and mitigation in the first place. Another 

intermediate node DDoS mitigation technique, called “defense by offense”, deliberately 

increases the volume of “good client” traffic so there is less bandwidth for the DDoS perpetrators 

to use.  
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This method may slow down the DDoS devices, but it will also amplify radio noise and congestion 

that triggered DDoS mitigation in the first place. Traditional radio congestion mitigation 

techniques, such as RRC connection reject, may also amplify DDoS radio degradation. In the RRC 

connection reject case, the victim cell sends RRC connection reject, along with a wait timer 

ranging from 0 to 16 seconds to the DDoS perpetrator UEs. This kind of overt countermeasure 

action may cause the compromised perpetrator UEs to ignore wait times and instead send noise 

inducing RRC requests at an even faster rate. 

 
Figure 4-3: RRC Connection Reject message per 3GPP TS 36.331. 

 

Considering these examples, IoT device density, and the sheer volume of DDoS attacks they could 

bring, a more targeted yet less overt radio countermeasure and mitigation approach is required.   

According to 3GPP 38.300 standards, all UE, including IoT, must initially access the radio network 

via a Random-Access Control Channel (RACH). For each UE, this shared RACH is the initial path to 

dedicated resources used for the remainder of any transaction. While sharing a common primary 

cell (radio carrier), UEs must share and therefore compete for RACH resources in a contention-

based or contention free manner.  

In contention-based RACH, over-active DDoS UEs may jam the RACH with interference in the form 

of RACH collisions with other UEs attempting to access the same cell at the same time. In 

contention-free RACH, over-active DDoS UEs may occupy a disproportionate share of RA 

preamble assignments. In either case, legitimate UEs, sharing the same RACH with DDoS UEs, will 

suffer delayed or blocked access to the radio network. 
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Figure 4-4: Contention-based and contention-free RACH procedures. 

Under typical load conditions, all UEs are load balanced between available frequencies and RACH 

resources. This is accomplished with inter-frequency handovers at the leading edge of 

transactions, and/or release with cell info at the trailing edge of transactions. Such load-balancing 

behavior is optimal under normal conditions, but with DDoS, this approach multiplies the 

legitimate UE impact and radio RACH signaling capacity between DDoS UEs and upstream targets. 

When DDoS is detected, the cell site applies a defensive load balance mechanism which pushes 

DDoS UEs towards a single, narrow radio frequency that is not shared with legitimate UE. This is 

accomplished via assignment of a DDoS countermeasure SPID (Service Profile Identifier), which 

narrows DDoS UE access to a single selected radio frequency.  
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In cases, such as private networks, where available spectrum is initially applied to a single radio 

frequency (ARFCN or EARFCN), the cell site may subdivide the spectrum by creating two new 

frequencies with imbalanced bandwidth. Over-active DDoS UEs compete and collide with each 

other for fewer RACH resources on a single, narrow radio frequency, and are less likely to acquire 

dedicated resources towards the upstream network, platform, application, and service nodes.  

From the DDoS UE perspective, this observe-able load balance and congestion activity appear to 

be the intended outcome from the DDoS attack = DDoS mission accomplished. From the 

legitimate UE and network perspective, the DDoS UEs are fighting and blocking each other before 

they are able to reach the DDoS victim = DDoS mission thwarted.   

 

 
Figure 4-5: Inter-frequency load balance for covert DDoS countermeasures. 

 

In this case, DDoS countermeasure effectiveness increases with the number of DDoS UEs, and 

the interference and blocking they cause for each other at the leading edge of their attempted 

transactions. 

5 SUMMARY AND NEXT STEPS 

In the above sections, we have described how radio and blockchain techniques can be combined 

to form a distributed and powerful IoT DDoS detection, location and covert countermeasure 
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mechanism. We have explored and shared initial results for the radio DDoS detection 

component, including approximately 60% DDoS prediction accuracy.  

Future research will include exploration of individual and combined Blockchain, radio location 

and countermeasure components of this proposal. 
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