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1 OVERVIEW 

1.1 INTRODUCTION 

The digitization of the manufacturing sector has enabled the availability of large volumes of data, 

this allows industry to embrace machine learning (ML) algorithms to identify and analyze 

patterns in the data. These patterns can be leveraged to enable decision support for activities 

including process and production planning, asset performance management and energy efficient 

manufacturing practices etc. The accuracy and robustness of ML algorithms depend heavily upon 

the amount, variety, veracity of training data.  

To this end, a data-sharing ecosystem is encouraged where organizations participate and 

contribute their data as a strategic resource for the benefit of all. The incentive for participating 

in such an ecosystem is the value generated by access to a larger pool of data for model training. 

However, due to industrial competition and data privacy concerns, organizations are reluctant to 

share potentially commercially sensitive data, thus, the datasets remain in silos.  

Federated learning (FedL) offers a potential solution to address the conflict between data 

protection and participation in a data sharing ecosystem. FedL enables organizations to 

collaboratively train robust AI models, without the need to directly share sensitive data with each 

other. Despite several contributions in domains such as natural language processing and 

healthcare, multiple barriers exist that are hindering the uptake of FedL in the manufacturing 

industry.  

A key challenge is the complexity associated with designing and deploying a FedL solution. It 

requires consideration of many constraints such as the application type, FedL client 

configuration, global model training orchestration, choice of encryption mechanisms to secure 

models and incentive mechanisms. Currently, there is a lack of a clear methodology that allows 

practitioners and industry stakeholders to identify and evaluate the potential of using a FedL 

approach for their specific use case scenarios.  

While the literature explores each of the design constraints independently, there is a need to 

consolidate these into a common framework to support the development of FedL solutions for 

smart manufacturing.  

1.2 PURPOSE 

The purpose of this paper is to translate practical experience of designing, building and deploying 

FedL solutions as well as an analysis of current literature into guidance that: 

• provides a perspective on the business models that enable and foster a collaborative 

ecosystem to increase participation in data sharing arrangements that are critical to the 

development of FedL solutions. 
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• identifies the key technological enablers (i.e., digitization) needed to support the 

application of FedL solutions. 

• proposes a set of characteristics that align use case scenarios with the benefits of a FedL 

approach in a smart manufacturing context. 

• offers guidelines for FedL implementation and deployment in the context of use case 

scenarios in smart manufacturing. 

1.3 SCOPE 

The scope of this paper is to explore the design requirements and implementation strategies for 

the use of federated learning within the manufacturing domain. Specifically, this will provide 

insight into approaches for creating a collaborative ecosystem where organizations can mutually 

benefit from robust machine learning models. This requires making high-quality data sets that 

are typically beyond the reach of any single organization accessible to all participants in a secure 

and privacy preserving manner. 

1.4 STRUCTURE 

The document is organized as follows: 

• Chapter 1 – Introduction 

• Chapter 2 – Motivation   

• Chapter 2 – Design considerations for FedL enabled collaborative ecosystem  

• Chapter 3 – Value of collaborative-ecosystem: potential business models 

• Chapter 4 – Guidelines for implementing FedL in smart manufacturing 

• Chapter 5 – Use case implementation 

• Chapter 6 – Conclusion 

1.5 AUDIENCE 

Manufacturing industry practitioners and applied researchers working towards realizing a 

collaborative ecosystem using federated learning. 

1.6 USE 

To design the solution architecture(s) of federated learning enabled manufacturing use cases. 

1.7 TERMS AND DEFINITIONS 

The following terms and definitions that are key to understanding this document are: 

• ML – Machine Learning 

• FedL – As per Kairouz, 2021, “Federated Learning is a machine learning setting where 

many clients (e.g., mobile devices or whole organizations) collaboratively train a model 
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under the orchestration of a central server (e.g. service provider), while keeping the 

training data decentralized.”’ 

• OEM – Original Equipment Manufacturer 

2 MOTIVATION 

Due to growing competition and data privacy concerns many organizations are reluctant to share 

their data with each other or on cloud infrastructures (for data pooling); and thus, are deprived 

access to the variety and veracity of having data gathered from multiple sources to train ML 

models (Mohr, 2021). This also hinders the potential to unlock value from unused datasets. FedL 

enables organizations to mutually benefit from each other's data by collaboratively training 

robust ML models without having to share their raw data (Kairouz, 2021).  

A FedL setup typically consists of several iterative phases to support model training which is 

initialized by FedL clients downloading a common model from a trusted centralized server. Clients 

proceed to train the model using data collected locally. Once the model is trained, the client 

shares only the updated model parameters with the trusted server. This is followed by the 

aggregation of the received model updates (from all clients) to create an updated global model 

that can be downloaded by the clients for the next iteration of training. The process terminates 

once the clients reach a consensus regarding the optimally of the global model. This approach 

allows the model to be exposed to a significantly larger pool of data that would be impossible for 

a single organization to possess alone.  

 
Figure 2-1: Ecosystems and Smart-Manufacturing Use Cases for Participants 

The first step towards implementing FedL in smart manufacturing scenarios is to identify an 

appropriate use case for FedL, i.e., where collaborative model training and/or sharing can 
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improve the performance of the predictive model owned by a standalone client. Subsequently, 

this will bring potential organisations together to form an ecosystem in which, data can act as a 

strategic resource for the benefit of all. Figure 2-1 presents an example network ecosystem 

aligned with some example scenarios that benefit from FedL applicable in the context of smart 

manufacturing: 

2.1 PRODUCT FAILURE PREDICTION 

Large scale organizations can use on-premises computational nodes to train predictive models 

supporting product failure prediction using a variety of data gathered from manufacturing sites, 

thus forming localized data silos. On the contrary, small-scale organizations can often lack access 

to large training datasets and as a result develop less robust models. FedL can help in such 

scenarios where similar equipment operating on multiple sites of different organizations form a 

virtual network and share their failure patterns with each other to reach a consensus about the 

failure prediction model. 

2.2 AUTO-LABELLING 

Prediction models deployed by an organisation require an initial supervised training procedure 

with the labelled data. Usually, labelling is performed manually by subject matter experts. To 

save time, auto-labelling using transfer learning is also feasible. Auto-labelling for un-seen data 

can benefit from FedL as a new participatory agent (organisation) can connect with the FedL 

ecosystem and gain access to a robust model trained with a variety of patterns observed by other 

agents over a longer period. 

2.3 PRODUCT OPTIMIZATION BY ORIGINAL EQUIPMENT MANUFACTURERS (OEM) 

OEM provides equipment to multiple organisations and has the capacity to monitor its 

performance over time. This data can be utilised to optimise/fine-tune the performance of the 

product for their clients. Additionally, it can provide an opportunity to minimise downtime, pre-

empt procurement delays by automating the procurement process of parts/equipment based on 

remaining useful lifetime of equipment or its components.  However, OEM is often unable to 

gather the data from multiple organisations due to privacy and trust issues. FedL can be leveraged 

in such scenarios where an OEM distributes a set of global functions to the organisations along 

with the equipment. The functions take gathered equipment data as input and return the 

computed values to the OEM.   

2.4 PRODUCT QUALITY ASSESSMENT 

On-time product quality assessment is an important step towards cost savings and zero-defect 

manufacturing. An initial model can be deployed on factory floors to classify damaged products. 

However, it is observed (Mohr, 2020) that different damages in the same product can be 
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observed by different manufacturers. FedL can enable clients to exchange the information about 

the observed damage with each other so that a more robust model can be built.  

To maximize the opportunities of a FedL solution in the context as described above it is important 

that practitioners utilize a formal approach to capture all characteristics of the use case and 

influence design choices. The motivation of this paper is to present design considerations and 

guidelines that are derived based on experience of successful deployments of FedL in industrial 

settings (Bharti, 2021). In particular, it has been demonstrated that FedL offers significant 

benefits in use cases such as remaining use-full lifetime (RUL) prediction and vision-based quality 

inspection. The lessons learned from real-world implementation offer an opportunity to provide 

insight and decision support for managers, developers and system integrators through a 

consolidation of options, constraints and design requirements that are typically faced in 

designing FedL solutions.   

2.5 DESIGN CONSIDERATIONS FOR FEDL ENABLED SMART-MANUFACTURING ECOSYSTEM 

As shown in Figure 2-2, there are five key considerations that should be taken into account to 

successfully design a typical FedL ecosystem within the context of smart manufacturing. There 

are existing data-sharing ecosystems that leverage similar design principles such as the 

methodology proposed in “Redesigning Trust: Blockchain Deployment Toolkit, 2020” from the 

World Economic Forum (WEF). This aims to support organizations in deploying blockchain based 

solutions with the key design considerations. The following derives a set of design questions 

specific to a FedL solution, that can be utilized by a practitioner to solicit ecosystem 

requirements, these will be explored further in subsequent sections.  

  
Figure 2-2: Workflow of a FedL Ecosystem 

Step 1: Identify the potential value of participating in a FedL ecosystem 

• What are the business challenges that can be solved by implementing a FedL 

ecosystem? 

• What are the set of values that can be generated by the ecosystem which can be 

garnered by participatory organizations? 

https://www.ibm.com/blogs/internet-of-things/vision-based-product-quality-inspection/
https://www.ibm.com/blogs/internet-of-things/vision-based-product-quality-inspection/
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• What is the economic viability of the ecosystem (IEEE Std 3652.1-2020, 2021)? For 

example, what are the incentive provisions for clients to participate in such 

ecosystem? What is the return on investment (ROI) of participation? 

• What are the potential risks (e.g. data protection, cyber security) and barriers (e.g. 

economic, regulatory ) for participation in a FedL ecosystem? 

Step 2: Potential participants 

• Who can be the targeted participants based on the problem at hand and the proposed 

business model? 

• What is the potential value that can be generated by each participant that cannot be 

achieved individually? 

• What is the minimum number of participants required to sustain such ecosystem? 

Step 3: FedL mode of operation 

• What are the typical requirements (i.e., quick response time, high accuracy etc.) of the 

problem addressed by the FedL solution? 

• Do participating organizations have suitable resources (computational and 

communication) to meet these requirements? 

Step 4: Governance structures 

• Who will orchestrate the global model training in each of the FedL mode of operation? 

• What are the provisions to ensure resource (computational and communication) 

allocation for model training and update among participatory clients? 

• What provisions are to be taken to ensure the security and quality of the shared model 

updates? 

• What provisions are to be taken to prevent the centralized orchestrator to be 

compromised? 

Step 5: Available technological drivers  

• What are the available technological solutions to realize the FedL ecosystem? 

• How prepared are participatory organizations for an initial development of such 

ecosystem? 

Answering design questions pertaining to each step is important to gather the solution 

requirements and influences the methodology taken for implementing the technological 

solutions required. This may also include sensitizing potential participants about the business 

model and value that can be generated from participating in such ecosystem and preparing them 

fully before adapting the FedL solution.   



Design Considerations and Guidelines 

IIC Journal of Innovation        9 

3 VALUE OF COLLABORATIVE-ECOSYSTEM: POTENTIAL BUSINESS MODELS 

The selection of the right use case is driven by a detailed assessment of potential collaborative 

business models which are shared among the targeted organizations for consideration and 

consent of participation. Betti (2020) defined a five-part framework to help organizations: 

1. Understand the business challenges. 

2. Develop applications to help overcome the business challenges. 

3. Determine the viable applications. 

4. Identify suitable collaborators for each application. 

5. Define the data-sharing relationship. 

For FedL, collaborations can be one of two models, sharing or allocation (Man, 2019). In the 

sharing model, collaborators can work together on with a pre-agreed split to capture value and 

realize greater scale or network effects that the pooling of data can provide, that is, the value of 

the data and information gained from it will increase when it is aggregated and shared. In the 

allocation model, value is created by optimally allocating risks between collaborators thereby 

allocating greater profit to the partner managing more risk (or more contributing data) in a FedL 

alliance. For example, as (Yang, 2019) has identified, FedL could make equitable rules for profits 

allocation with the help of consensus mechanism from Blockchain technologies.  

At present, the primary approach to FedL alliances is via data sharing platforms provided by 

independent 3rd parties, who are not participants in the alliance. Such platforms may be 

attractive to organizations who cannot build their own platforms for data sharing or who want 

to outsource the challenges of managing data transactions, matching, licensing, and transfer of 

data (Richter, 2019). These platforms also have the benefit of solving the problem of trust, not 

only with having the platform being provided by a neutral 3rd party, but also through features 

such as certification, secure access control and digital watermarking (Richter, 2019). An example 

of this is the FedAI Ecosystem developed by WeBank, which offers an IoT driven data sharing 

platform, with applications in the areas of vehicle insurance, financial lending, and anti-money 

laundering.   

Another scenario that utilizes the FedAI ecosystem is to create and online visual object detection 

platform to support collaborative object detection and minimize excessive data transfer to 

central cloud servers from cameras deployed in the field. Another example is IBM’s Maximo 

visual inspection that has presented such a federated system for vision-based defect detection 

in manufacturing products (Bharti, 2021). Such Industrial IoT use cases can prove to be crucial in 

organization’s growth in a competitive environment where if the defected products are delivered 

to customers this could not only hamper the organization’s reputation and future business 

prospects but also result in significant losses in terms of raw material wastage and cost of 

recycling. 
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Another interesting example of this approach applied in the health industry is the MELLODY 

project, a consortium of 17 European partners is funded by EU Innovative Medicines Initiative 

(IMI) as a public–private partnership. The MELLODY alliance uses the Owkin Connect platform to 

manage the FedL activities that makes sure that the data (e.g. generated from personal medical 

devices, patient records, etc.) never leaves the data owner’s system and only non-sensitive 

models are exchanged. To provide full traceability of the operations, the platform is based on a 

private Blockchain, with de-centralized control.  

Future FedL alliances may follow this approach as it outsources the technology considerations to 

third parties, which eliminates the cost of building the technology. This also introduces an 

independent third party for whom there is no competitive advantage to be gained by having 

access to the shared data. The technology itself may solve some of the traditional challenges with 

data sharing alliances.   

Key to applying FedL as an enabler of collaborative business models are examples of successful 

projects, products, and enterprises that can point to this technology as being the key 

differentiator. The business community will look at how successful projects like the MELLODY 

and FedAI ecosystem meet these challenges, before deciding to embrace FedL at scale. Data-

driven and collaborative smart-manufacturing requires the addition of a new set of skills, there 

remains significant knowledge gaps between machine learning specialists and domain experts. 

New technologies such as FedL will act as fundamental enabler to deliver new modes of 

interaction that underpin existing and future workflows and there is a need to ensure employee 

support to maximize the potential of these technologies. Collaborative digital platforms support 

the involvement of stakeholders in the process creating a community of practice (Fit4FoF, 2018) 

for the design, definition and implementation of new programs and are required to provide 

remote, interactive upskilling and operate in tandem with workers across full process areas. 

4 GUIDELINES FOR FEDL IMPLEMENTATION IN SMART MANUFACTURING 

Once the business benefit of a FedL approach has been identified the next step is to define the 

implementation approach for the given use case scenario. To support this a decision model 

(Figure 4-1) is proposed that captures the pathway for implementing FedL solutions along with 

the current available technological drivers to realise the FedL ecosystem (i.e., choosing the 

correct building blocks of a FedL solution). The following outlines the main pathways for the 

proposed decision model. 

4.1 CHOICE OF PARTICIPATORY CLIENT 

Organizations may participate in the FedL process by using siloed data (cross-silo) on their geo-

distributed data centers or on distributed IoT edge devices (cross-device). This is enabled by 

finalizing the design considerations (Section 3) for participating in the ecosystem. When the data 

across multiple clients share the same features but belong to different sample IDs, it is known as 

horizontal FedL and is mainly used to increase the variety and velocity of the input data.  
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On the other hand, in vertical FedL, data across multiple clients overlap on sample IDs but not on 

features. This is often used when clients participate to share the missing/intermediate features 

of the dataset. An example of cross-silo-vertical FedL in smart-manufacturing is monitoring the 

health degradation of an industrial bearing. This can be done by capturing images in a time-series 

and/or by recording parameters such as vibration, temperature etc.   

Cross-device FedL is the most used paradigm of FedL where clients (>10,000) are un-reliable, 

state-less, and usually participate in a horizontal FedL of a light-weight predictive model. An 

example of cross-device FedL for smart-manufacturing is the collaboration of similar assets 

across multiple sites of organizations where agile edge analytics is important. The connected 

edge devices form network clusters i.e., all edge devices in a single cluster possess IID data about 

the same type of asset.  

Digital twins can be the potential technology drivers for cross-device FedL as the concept 

provides a basis to make the transition from standalone, relatively unintelligent systems to a 

network of “intelligent” objects on the internet, facilitating and fueling the development of new 

value-added services enabled by access to data/model extracted from distributed physical assets.  

Resource-constrained IoT edge devices are used as FedL clients if the global model is lightweight 

in terms of the number of model parameters and training data size. To validate this, the authors 

conducted experiments on single board computers (Raspberry pi) with 2GB RAM. A lightweight 

artificial neural network (ANN) with 2-hidden layers was used as a global model to be trained 

among three Raspberry pi devices and a centralized orchestrator (Laptop machine). The 

experiment results showed that almost 60% of the memory was occupied during the model 

training process with >85% CPU utilization throughout the experiment. This shows that such 

resource constrained IoT edge devices will not be able to train a more complex ML model such 

as deep learning, for which the edge/cloud servers are the appropriate choices. 

On the other hand, the clients involved in cross-silo FedL are limited (1-100), reliable, state-full 

and equipped with enough computational resources. Interoperability and complex data 

ownership structures remain a challenge in the implementation of both cross-device and cross-

silo FedL, as such the use of standards is encouraged. In the case of manufacturing standards 

such as OPC UA and Asset Administration Shell (AAS) are emerging as key approaches to support 

information modelling that can be common across all participants in the FedL network. IEEE 

standard 3652.1™-2020 defines an architectural framework and requirements for the application 

of FedL. It sets out to act as a guide to promote the use of distributed data sources and FedL 

without violating regulations or ethical considerations. 

4.2 CHOICE OF FEDL MODE OF OPERATION 

In cross-silo FedL, any of the organisations can be elected as a trusted orchestrator and can 

manage the global model training task. However, when competing organisations are involved, 

electing a single orchestrator is often un-desirable considering the cost of manufacturing data 
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leakage. Thus, a fully decentralised or hybrid control is preferred where interaction is peer-to-

peer among organisations. However, a decentralised consensus over the global model may take 

more time as compared to centralised aggregation. Moreover, a trustworthy centralised 

authority may still be in the charge to decide upon the global model architecture, initial hyper-

parameters setting and debugging.   

Implementing fully decentralised orchestration in cross-device FedL involves a huge number of 

un-reliable clients inching towards the consensus which may result in increased response time.  

However, managing a huge number of clients by a single orchestrator is also not feasible in terms 

of monitoring the edge resource information for appropriate client selection. To this end, a local 

edge server can act as an interface to the global server. The global model can be downloaded 

beforehand at the local edge servers also gathering the model parameter updates from clients 

and relaying these to the global server. This hybrid orchestration can unlock the potential of real-

time data analytics in true sense by minimizing the prediction delay and maximizing the reliability 

of clients.  

Such hybrid orchestration is realized and tested in one of our previous contributions (Bharti, 

2021) in this area. The experiment results showed that utilising edge servers as interaction points 

for edge devices prevents client failure and minimizes the model convergence time. On the other 

hand, the model accuracy and convergence time suffers if all the clients are to directly interact 

with the global server. 

As Big Data and deep learning (Kotsiopoulos, 2021) algorithms are key technological enablers for 

implementing cross-silo FedL, cross-device FedL on the other hand is mainly driven by 

technologies such as edge computing and 5G to support real-time data analytics. 

 
 Figure 4-1: FedL Implementation Decision Model 
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4.3 GLOBAL MODEL TRAINING ORCHESTRATION AND SECURITY PROVISIONS 

As the original data can be re-constructed from shared model updates (Kairouz, 2021) there is a 

requirement to further protect sensitive manufacturing raw data against the attackers. 

Traditionally, trusted aggregation mechanisms are employed to deal with this issue. However, it 

becomes a major challenge in cross-silo FedL across multiple manufacturing organizations.  

Due to the preferred fully distributed control in such scenarios, a consensus relating to the global 

model can be achieved by utilizing Distributed Ledger Technologies - DLTs (Isaja, 2018) such as 

Blockchain. A corner stone to any FedL process is data integrity and DLT provides intrinsic 

properties that can ensure data integrity along a value chain and as such provides a single source 

of truth that can be used to build reliable models and analysis.  

Type of Clients Orchestration Mode of operation Technologies 

IoT Edge 
devices 

Edge 
servers 

Cloud 
servers Centralized  Hybrid 

De-
centralized 

Cross-
device Cross-silo 

 

✓     ✓     ✓   
5G, IIoT, Edge 
Computing, 
Light-weight 
machine 
learning, Digital 
twin 

✓       ✓   ✓   

✓     ✓       ✓ 

✓       ✓     ✓ 

  ✓   ✓     ✓   
Deep learning, 
Differential 
privacy, 
Homomorphic 
encryption 

  ✓     ✓   ✓   

  ✓     ✓     ✓ 

    ✓     ✓   ✓ 

Big data, Deep 
learning, 
Homomorphic 
encryption, 
Distributed 
ledger 
technologies 

 
Table 4-1: Possible Configurations for FedL Implementation and Required Technological Drivers 

Many platforms are quickly emerging that provide a marketplace for data and model sharing 

(Open Application Network, dataspace, IoTA). These marketplaces leverage Blockchain to 

provide a mechanism for producers and consumers of datasets that can leverage vast quantities 

of data in a collaborative, fair and transparent manner. DLT offers the opportunity to monetize 

data exchange thus incentivizing organizations to collaborate and share model updates. 
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 Although research into model governance for FedL is still relatively immature, opportunities exist 

with Blockchain to ensure trust in the models being deployed for AI based systems, especially 

those shared, licensed, or purchased from third parties. In the context of FedL, if a client is 

compromised to enter incorrect model update (model poisoning attack (Chen, 2021)), Blockchain 

provides a consensus mechanism about the quality of the model update received from that client 

i.e., whether to accept the model update or reject.  

One such example is proposed by (Zhang, 2021) which utilizes blockchain to build a data-sharing 

sharing platform for manufacturing organizations. The organizations are categorized into: (1) 

client organizations and (2) server organizations. Clients train the federated model while the 

servers owned the data-sharing platform and orchestrated the model aggregation process.  

Another example of utilizing blockchain for decentralized model aggregation is proposed in 

(Zhao, 2021) where models related to home appliances were used to fine tune their performance 

i.e., energy consumption. Blockchain is again used as a model sharing platform where consumers 

can upload their specific local models to be aggregated by dedicated miners on the blockchain. 

Given the advantages, Blockchain also faces some challenges which need to be addressed before 

utilizing it for FedL. In such de-centralized setup, clients must share their model updates with 

each other to reach to the consensus about the optimality of the global model. This may expose 

an organization’s local model parameters to another competing organization.  

Thus, another layer of security at client level is needed on top of DLT to protect the sovereignty 

of the model updates. Solutions such as differential privacy (DP) (Choudhary, 2019) and 

homomorphic encryption (Shreshtha, 2019) can prevent the re-construction of raw data from 

client model update. However, both are time consuming, and DP suffers in terms of model 

accuracy. They can be utilized along with Blockchain for cross-silo FedL whereas, they are not 

suitable for cross-device FedL where real-time data analytics is of paramount importance and 

thus a trusted centralized and/or hybrid orchestration should be an appropriate choice for such 

scenarios. 

Once the appropriate client, mode of operation, security provisions and orchestration type are 

selected for the given smart manufacturing use case requirements, suitable technological drivers 

can be derived according to the possible FedL solution configuration (Table 4-1). 

5 USE CASE IMPLEMENTATION  

While the FedL implementation guidelines proposed in section 5 can be leveraged to support all 

use case examples as set out in section 2, this section presents the use of the decision model 

shown in Figure 4-1 in the context of product optimization to identify the implementation 

guidelines.   
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Product Optimization by Original Equipment Manufacturers (OEM) 

This is a typical cross-silo FedL setting where multiple organizations in possession of equipment 

provided by an OEM, are willing to participate in a collaborative ecosystem to improve the 

performance of the equipment but stipulate that they cannot sharing raw equipment data with 

each other or with the OEM. As the variety and veracity of the equipment data gathered from 

one manufacturing site is not enough to mine complex data patterns, the objective is to gather 

the data around the equipment operating in different working conditions at their corresponding 

organizational sites and perform a collaborative model training using FedL. 

• Type of clients and mode of operation: Data gathering associated with operational 

efficiency of equipment is typically collected in parallel to equipment’s normal 

operational tasks and thus the product (equipment) fine-tuning/optimization does not 

demand real time data analytics. As per the decision model, the type of clients in this use 

case can be deployed either as on-premises edge servers if the global ML model is not 

computationally demanding or on cloud servers to support a computationally demanding 

model training task. This decision is driven by the amount of training data and frequency 

of model exchanges between participatory organizations. 

• Global model training orchestrator: In such cross-organizational settings, participatory 

organizations may be hesitant in letting a single organisation orchestrate the global model 

training. As per the decision model, a decentralized orchestration is suited for this use 

case where a third party (chosen by participatory organizations) or the OEM itself can 

become the orchestrator. The OEM can also employ an interesting business model where 

the cost of model training orchestration can be accommodated by receiving a copy of the 

trained global model. It may benefit OEM to produce/supply more optimized products in 

the future. Current third-party (apart from OEM) solutions in this direction provide a 

secure model/data sharing platform to be utilized by participatory clients during model 

exchanges.  

• Security provisions: The use case is a typical cross-silo FedL setting in which participatory 

organizations cannot afford to expose even their trained model parameters to each other 

or to the orchestrator. Thus, additional security provisions are needed in this use case to 

prevent any sensitive data/model leakage. In addition to that, a more secure data-sharing 

platform must be utilized to keep transactional (model exchanges) records intact during 

and post model training. 

• Technological enablers: Sophisticated deep learning models and computationally rich 

model training platforms are key enablers for this use case. In addition to that, DLT such 

as Blockchain and model encryption techniques such as differential privacy and 

homomorphic encryption should be utilized for secure and auditable model exchanges.  
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Figure 5-1: Use Case Design Architecture for Implementing FedL Solution 

A high-level architecture for implementing FedL solution for this use case is presented in Figure 

5-1. The key architectural components are (1) Participatory organizations, (2) Temporary 

orchestrator and (3) DLT platform. The interaction between clients (organizations) and 

aggregator(s) takes place via DLT platform where each node in the ledger represents a client. The 

key technological enablers along with design features are highlighted in the architecture.  

6 CONCLUSION 

This paper presented design considerations and guidelines for implementing FedL solutions for 

smart manufacturing applications. Sample use cases of FedL in manufacturing, followed by key 

design requirements to realise a FedL ecosystem are discussed in detail. A brief introduction to 

the potential business models to be leveraged by the FedL ecosystem is also presented. Finally, 

a decision model about various FedL architectural components (i.e., type of clients, mode of FedL 

operation & global model training orchestration) is proposed to support the choice of suitable 

FedL configuration for the given use case. Future work will include further evaluation of the 

effectiveness of the proposed decision model with practitioners and relevant stakeholders. 

Emphasis will be placed on its applicability this across multiple industrial IoT sectors and use case 

scenarios. 
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