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1 OVERVIEW 

The Industrial Internet of Things (IIoT) seeks to connect industrial assets and machines—the 
things—to enterprise information systems, business processes and people who operate and use 
them. Advanced analytics is at the core of this next-generation level of integration and, when 
applied to machine and process data, provides new insights and intelligence to optimize decision-
making significantly and enable intelligent operations leading to transformational business 
outcomes and social value. These new insights and intelligence can be applied across any level of 
any industry if the appropriate data can be collected and analytics applied correctly. If data is the 
new oil, data analytics is the new engine that propels the IIoT transformation. 

1.1 INTRODUCTION 

As a fledgling discipline combining advances in mathematics, computer science and engineering 
in the context of Information Technologies (IT) and Operational Technologies (OT) convergence, 
industrial analytics plays a crucial rule in the success of any IIoT system. Industrial analytics has 
unique requirements, characteristics and challenges compared to business analytics and so 
requires special considerations in its implementation. Since industrial analytics is in its early stage 
of development, much needs to be explored. This technical report describing an Industrial 
Internet Analytics Framework is intended to spur discussions and research, and speed up the 
development and maturity of this indispensable technology. 

1.2 PURPOSE 

This Industrial IoT Analytics Framework document provides guidance and assistance in the 
development, documentation, communication and deployment of Industrial Internet of Things 
Analytics Systems. 

1.3 SCOPE 

This document supplements the IIC Industrial Internet of Things Reference Architecture (IIRA)1 
by detailing Industrial Analytics crosscutting concerns. It provides the concepts and components 
required to create a viable analytical system and the characteristics of same so the technologies 
employed provide the necessary services to perform successfully and correctly in an industrial 
setting. This document presents an architectural framework of Industrial Internet of Things 
Analytics systems using the same approach as the IIRA, specifically the architecture viewpoints 
(business, usage, functional and implementation), which in turn was based on ISO/IEC/IEEE 
42010:2011 architecture concepts.  

1.4 STRUCTURE 

This document is organized as follows: 

                                                      
1 http://www.iiconsortium.org/IIRA.htm 
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• Chapter 2 – Business Viewpoint 
• Chapter 3 – Usage Viewpoint 
• Chapter 4 – Functional Viewpoint 
• Chapter 5 – Implementation Viewpoint 
• Chapter 6 – Artificial Intelligence and Big Data 
• Chapter 7 – Analytics Methods And Modeling 
• Chapter 8 – System Characteristics and Crosscutting Functions Related to Analytics 
• Annex A – Example Analytics Standards 

1.5 AUDIENCE 

This document is intended for IIoT system architects and business leaders looking to successfully 
deploy industrial analytic systems.   

1.6 USE 

The Industrial Internet of Things Analytics Framework is intended as an architectural template 
for system architects to create a concrete architecture tailored for the requirements of a specific 
IIoT system; to assist in understanding and communicating the overall system among its 
stakeholders; and to implement the architecture to meet the unique system requirements. 

1.7 TERMS AND DEFINITIONS 

Since this document is intended to address both IT and OT, the following terms and definitions 
that are key to understanding this document are: 

AI: Artificial Intelligence  

Analytics: Analytics may be broadly defined as a discipline transforming data into information 
through systematic analysis 

Architecture Framework: conventions, principles and practices for the description of 
architectures established within a specific domain of application and/or community of 
stakeholders1 

ICT: Information and Communications Technology  

Industrial Analytics: Industrial Analytics is the use of analytics in IIoT systems 

IT: Information Technology  

OT: Operational Technology 

1.8 CONVENTIONS 

Given that the document is non-normative, all ‘must’, ‘may’ and ‘should’ statements are to be 
interpreted as English language and not as in RFC 2119 [IETF-RFC2119]. 

                                                      
1 ISO/IEC/IEEE 42010:2011 
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1.8.1 TYPOGRAPHICAL AND LINGUISTIC CONVENTIONS AND STYLE 

Terms that require definition are rendered in italics. (As the usage immediately preceding 
demonstrates, italics may also be used as example, or for emphasis.) 

Generally, only the first use of the term is italicized. However, when a term can be read in its 
usual English language mode, the first use of the term may be italicized as the discussion becomes 
technical. In the first example below, “safety” and “security” are used informally. In the second, 
it introduces a definition. 
 

Example 

“Among the key system characteristics that must be considered, safety is perhaps the 
most important, followed by security.” 

“Safety is the condition of the system operating without causing unacceptable risk of 
physical injury or damage to the health of people, either directly or indirectly, as a 
result of damage to property or to the environment.” 

1.9 RELATIONSHIP WITH OTHER IIC DOCUMENTS 

This document fits into the IIC Technical Publication Organization as shown in Figure 1-1.  

Figure 1-1 IIC Technical Publication Organization 
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2 BUSINESS VIEWPOINT 

The business viewpoint attends to the concerns of the identification of stakeholders and their 
business vision, values and objectives in establishing an industrial analytics system in its business 
and regulatory context. It further identifies how the IIoT analytics system achieves the stated 
objectives through its mapping to fundamental system capabilities. 

These concerns are business oriented and so of particular interest to business decision-makers, 
product managers and system engineers. 

2.1 THE INDUSTRIAL INTERNET OF THINGS 

The Industrial Internet of Things is a natural extension of the industrial and internet revolutions. 
IIoT will be a major force driving economic growth for the coming decades, at a greater pace than 
prior revolutions. As outlined by the World Economic Forum,1 “The first Industrial Revolution 
used water and steam power to mechanize production. The Second used electric power to create 
mass production. The Third used electronics and information technology to automate 
production. Now, a Fourth Industrial Revolution is building on the Third, the digital revolution 
that is blurring the lines between the physical, digital and biological spheres.” 

To accelerate this digital revolution the Industrial Internet Consortium (IIC) is advancing the 
technology of IIoT across a diverse set of application domains. The industrial internet integrates 
the industrial assets and machines—the things—to enterprise information systems, business 
processes and people who operate or use them. With these connections to the industrial assets 
and machines, new technologies enable the application of advanced analytics to machine and 
operational process data to gain insights into the operations, optimize them intelligently to boost 
productivity, increase quality, reduce energy and material consumption, increase flexibility, and 
ultimately create new business values, while maintaining commitments to safety, reliability, 
resilience, security and data privacy as the trustworthiness of the systems, and conservation of 
the environment as social values. 

Industrial analytics, applied to machine data for operational insights, is as an engine driving the 
convergence of OT and IT, and ultimately value creation for the Fourth Industrial Revolution. 

2.2 CREATING BUSINESS VALUE 

An enterprise needs to increase throughput, reduce expenses and inventory to generate higher 
margins and thus create business value. Sales drives manufacturing throughput, but it cannot 
exceed the enterprise’s capacity to produce, lest it compromise on-time delivery and disappoint 
customers. One approach is to identify performance bottlenecks in overall operations 
continuously and remove them one-by-one to meet the demand from sales and profit targets. 

                                                      
1 Schwab, K., “The Fourth Industrial Revolution: what it means, how to respond”, World Economic Forum 

(2016). 
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This process needs to be grounded in reliable information about the demands, production, 
inventory and operational processes. IIoT and specifically industrial analytics enables 
stakeholders to gather data from machines and optimize processes more efficiently. The 
opportunity is substantial since over 86% of companies do not have a corporate analytics 
program that uses manufacturing data (LNS Research, 20161). 

According to the 2016 Global Manufacturing Competitiveness Index report by Deloitte Touche 
Tohmatsu Limited and the US Council on Competitiveness, Predictive Analytics and Smart 
Connected Products are #1 and #2, respectively (see Table 2-1). This shows that the desire to 
leverage analytics is a high priority for most CEOs. However, the awareness of how that 
technology will be applied and the areas of greatest impact are not well understood. 

As our business systems and analytical capabilities increase, some enterprises will adopt data and 
analytical strategies; some will not. Enterprises that avail themselves of these technologies will 
far outpace the others in their ability to produce products and services quickly and safely, and 
maintain quality with full accountability for their processes. The cost of manufacturing will also 
drop, allowing developed countries to compete effectively in global markets because the value 
of skills and experience will more than compensate for the wage differential. 

2.3 THE VALUE OF INDUSTRIAL ANALYTICS 

Analytics may be broadly defined as a discipline transforming data into information through 
systematic analysis. Industrial analytics is the use of analytics in IIoT systems. It enables a better 

                                                      
1 http://blog.lnsresearch.com/5-real-surprises-from-the-2016-metrics-that-matter-research-study 
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understanding of a system’s operational states, performance and environment. It identifies and 
analyzes emerging information patterns to enable industrial system assessments under varied 
conditions. These assessments improve functionality and reduce inefficiency and operational 
cost. For example, utility companies may optimize electricity output based on dynamic usage 
patterns that factor in weather, season, events, pricing, resource availability, cost and electricity 
generation asset availability; support vehicle and equipment fleet management; optimize smart 
facility energy management and other unimagined capabilities. This is called dynamic operations 
optimization. 

Industrial analytics can also optimize system missions. For example, metropolitan-area real-time 
traffic-pattern analysis combined with roadway conditions, roadway construction and 
maintenance, weather condition, time and day, seasons, accidents and other events can lead to 
vehicle control systems determining optimal routes to reduce travel time, congestion, pollution 
and energy consumption.  

Industrial analytics can be applied to machine-streaming data received from disparate sources to 
detect, abstract, filter and aggregate event-patterns, and then to correlate and model them to 
detect event relationships, such as causality, membership, and timing characteristics. Identifying 
meaningful events and inferring patterns can suggest large and more complex correlations so 
that proper responses can be made to these events.  

Industrial analytics can also be used to discover and communicate meaningful patterns in data 
and to predict outcomes. Traditional business analytics are typically applied only to business data 
to describe, predict and improve business performance.  

To understand the value of industrial analytics, consider this example. In an industrial setting, a 
major cause for unplanned downtime and expense is machine outage. This translates to billions 
of dollars1 lost in unplanned failures of equipment and unnecessary maintenance. Currently, 
most companies use scheduled maintenance plans for preventive maintenance. This means that 
maintenance is performed on machines even if they are sitting idle, costing time and resources, 
as well as requiring unnecessary disruptive procedures that can reduce equipment reliability. On 
the other hand, critical problems are often missed due to insufficient diagnostics resulting in 
unplanned downtime and often-costly repairs. Both the over- and under-maintenance of assets 
contribute to higher operating expense. 

To address these issues, maintenance needs to shift to prognostics that will schedule 
maintenance based on component lifetime characteristics and its usage, rather than to a 
predetermined schedule. Next, the practice needs to become predictive where sensor and 
machine operational data are analyzed to forecast the likelihood of certain failures in a given 
period. With this information, machine maintenance can be scheduled optimally to avoid 
interruption to the operations and at lower cost. Analytics can also be applied into the control 

                                                      
1J. Manyika, et al, “The Internet of Things: Mapping the Value Beyond the Hype”, McKinsey & Company 

(June 2015) 
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loop to adapt the machines to avoid operational conditions that can have detrimental effects on 
the machines and processes. 

Industrial analytics plays a vital role providing crucial insights needed for decision-making and for 
optimal deployment of resources in industrial applications. Those capabilities in turn effectively 
translate to an increase in the efficiency of labor and capital. Long-term GDP growth is 
fundamentally dependent on capital, labor and efficiency. Increasing the efficiency of capital and 
labor is paramount for GDP growth and competitive advantages. 

Business leaders have increasingly recognized the importance of industrial analytics. A recent 
survey (see Figure 2-1) carried out by IoT Analytics GmbH1 found that 69% of the surveyed 
business leaders or industry analysts consider industrial analytics crucial for their businesses 
within 5 years and want to apply analytics to strengthen their businesses. The same survey found 
that analytics on physical objects and machines (highlighted in Figure 2-1) rank high in 
importance. Predictive and prescriptive maintenance of machines (at 79% of surveyed 
considering it extreme or very important) ranks at the top, slightly surpassing consumer and 
market related analytics (at 77%). 

3 USAGE VIEWPOINT 

The usage viewpoint addresses the concerns of expected system usage. It is typically represented 
as sequences of activities involving human or logical (i.e. system or system components) users 
that deliver the system’s intended functionality.  

System engineers, product managers and those involved in the specification of the analytics 
system representing the ultimate users are the typical stakeholders for these concerns.  

                                                      
1  Knud Lasse Lueth, Christina Patsioura, Zana Diaz Williams and Zahra Zahedi Kermani, “INDUSTRIAL 

ANALYTICS 2016/2017”, IoT Analytics GmbH, December, 2016 

Figure 2-1 Importance of industrial analytics considered by business leaders and industry analysts 
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3.1 ANALYTICS IN INDUSTRY 

Analytics as a discipline in applied mathematics has been widely adopted by organizations for 
decades, most prominently as business analysis in finance, banking and ecommerce. In industrial 
settings, analytics is currently used to identify and address potential faults in assets, improve 
uptime and reduce repair costs. This is called condition-based monitoring, or CBM. With the rapid 
development standards and innovations in sensor and computer technology, it is now possible 
to extend advanced analytics to large numbers of machines across the globe. Advanced analytics 
algorithms and techniques, including machine learning, are now used to analyze large amounts 
of data gathered from industrial control systems. The insights gained from the analytics can be 
applied automatically to increase operational efficiency of machines by, for example, anticipating 
peak usage, streamlining the supply chains for parts needed for preventative maintenance, and 
for business planning and decision-making. Using insights drawn from the machine data to drive 
intelligent operational and business processes, industrial analytics enables the convergence of 
analytics in the OT and IT worlds. 

3.2 GETTING STARTED WITH INDUSTRIAL ANALYTICS 

Industrial analytics are used to identify and recognize machine operational and behavioral 
patterns, make fast and accurate predictions and aid in optimal decision making with greater 
confidence. 

Analytics generally fall into three major categories: 

Descriptive analytics gain insight from historical or current data streams including for status and 
usage monitoring, reporting, anomaly detection and diagnosis, model building or training. 

Predictive analytics identify expected behaviors or outcomes based on predictive modeling using 
statistical and machine-learning techniques, e.g. capacity demand and usage prediction, material 
and energy consumption prediction, and component and system wear and fault predictions. 

Prescriptive analytics uses the results from predictive analytics as guidance to recommend 
operating changes to optimize processes and to avoid failures and the associated downtime. An 
example of prescriptive analytics is on-demand production from a solid geometric assembly 
model to find the optimal set of manufacturing processes to achieve the final product. 

The analytics results can be applied automatically to the machines and systems, or used to 
support human decisions through visualization of the analytics results to enhance human 
understanding and generate confidence in a decision. 

Industrial analytics has unique challenges because the results can alter the operation and safety 
of things in the physical world. These effects may be undesirable or harmful, inadvertently 
affecting the safety of people or damaging property and the environment. Moreover, because 
industrial analytics often interpret data from different sensors and machines that may conflict 
with one another, we need to understand and synthesize the diverse information streams to 
reach a correct conclusion. Table 3-1 below, identifies the requirements to consider when 
planning for industrial analytics. 
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Topic Description 

Correctness  
Industrial analytics must satisfy a higher level of accuracy in its analytic results. Any system 
that interprets and acts on the results must have safeguards against undesirable and 
unintended physical consequence. 

Timing  
Industrial analytics must satisfy certain hard deadline and synchronization requirements. 
Near instantaneous analytic results delivered within a deterministic time window are 
required for reliable and high quality actions in industrial operations. 

Safety  
When applying industrial analytics, and interpreting and acting on the result, strong safety 
requirements must be in place safeguarding the wellbeing of the workers, users and the 
environment. 

Contextualized 

The analysis of data within an industrial system is never done without the context in which 
the activity and observations occur. One cannot construct meaning unless a full 
understanding of the process that is being executed and the states of all the equipment and 
its peripherals are considered to derive the true meaning of the data and create actionable 
information. 

Causal-oriented 

Industrial operations deal with the physical world and industrial analytics needs to be 
validated with domain-specific subject matter expertise to model the complex and causal 
relationships in the data. The combination of first principles, e.g. physical modeling, along 
with other data science statistical and machine learning capabilities, is required in many 
industrial use cases in order to provide accurate analytics results. 

Distributed 

Many complex industrial systems have hierarchical tiers distributed across geographic areas. 
Each of these subsystems may have unique analytic requirements to support their 
operations. Therefore, industrial analytics must be tailored to meet the local requirements 
of the subsystems it supports. The requirements on timing (avoiding long latency) and 
resilience (avoiding widespread outage of service because of faults in the network or in a 
centralized system) require a distributed pattern of industrial analytics in that the analytic 
will be implemented close to the source of data it analyzes and to the target where its 
analytic outcome is needed. 

Streaming 

Industrial analytics can be continuous or batch processes. Because of continuous execution 
in industrial systems, a large proportion of industrial analytics will be streaming in nature, 
performing analysis of live data and providing continuous flow of analytics results in support 
of the operations. Traditional batch-oriented analytics will still be performed either for 
building or improving analytic models, or for human decision-making. 

Automatic 

For the industrial analytics to support continuous operations, the analysis of streaming data 
and the application of analytic outcomes must be automatic, dynamic and continuous. As 
the technologies in industrial analytics advance, improvements in analytic modeling e.g. 
through learning may also be automatic. 

Semantics 

Analytical systems require data that has meaning and context. Unstructured data, when 
reported without attribution to the source and the component or system it represents, 
makes deriving value complex since it requires the analytics to guess or infer the meaning. 
Inference unnecessary adds significant uncertainty into the system. Most data can be 
properly attributed at the source, and if this information is communicated, it can 
significantly increase the success and accuracy of the analytical systems. 

Table 3-1: Industrial Analytics Requirements 

4 FUNCTIONAL VIEWPOINT 

The functional viewpoint focuses on the functional components in an industrial analytics system, 
their structure and interrelations and the relation and interactions of the system with external 
elements, to support the usages and activities of the overall system. 

These concerns are of particular interest to system and component architects, developers and 
integrators. 
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4.1 ANALYTICS ARCHITECTURE OBJECTIVES AND CONSTRAINTS 

Industrial analytics can be applied in different domains distributed across an IIoT system and 
tuned to varying time-scale horizons. 

The required architecture can be analyzed in the context of the functional domains of the 
Industrial Internet Reference Architecture (IIRA) developed by the IIC, as shown in Figure 4-1 
above. An end-to-end IIoT system in the IIRA is functionally decomposed into five functional 
domains: 

• Control: sensing, communication, execution, motion, and actuation; 

• Operations: provisioning, management, monitoring, diagnostics and optimization; 

• Information: data fusion, transforming, persisting, modeling and analyzing; 

• Application: logic, rules, integration, human interface; and 

• Business: enterprise and human resources, customer relationships, assets, service 
lifecycle, billing and payment, work planning and scheduling. 

The control domain is a collection of functions performed by the industrial assets or control 
systems, in exercising the closed control loops within themselves. The operations domain is a 
collection of functions for assets and control systems management and maintenance to ensure 
their continuing operations. The information domain is a collection of functions for collecting, 
transforming, analyzing data to acquire high-level intelligence of the entire system. The 
application domain is a collection of functions for applying use-case-specific logic, rules and 
models based on the information obtained from the information domain to achieve system-wide 
optimization of operations or other business objectives. The business domain is a collection of 
functions for integrating information across business systems and applications to achieve 
business objectives. 

Industrial analytics results can be applied to the control domain at the edge providing real-time 
operational insights to the control loops in a machine-time horizon that typically requires analytic 
response in milliseconds or less. Examples include autonomous vehicles and robotics. Analytics 
in this time horizon tend to be streaming in nature and applied automatically. Industrial analytics 
results can be applied to the application and operations domains to provide machine insights 
that enable advanced maintenance such as automatic fault-detection and diagnosis, and 
preventive maintenance, or to drive optimal operations across fleets of machines or assets. The 
analytics result is applied in an operation-time horizon that typically requires an analytic response 
in the range of seconds or more. Analytics in this time horizon also tends to be streaming in 
nature and applied automatically. Industrial analytics results can also be applied to the business 
domain as well, providing insights to enable in intelligent business processes, including aiding 
business planning and engineering processes. The analytics result is applied in a planning-time 
horizon that typically requires an analytic response in the range of days or more. It consists of 
both streaming analytics results that are applied automatically (e.g. to work and machine part 
scheduling for on-site repair) and batch analytics results based on on-demand queries. 
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4.2 ANALYTICS FUNCTIONALITY 

Industrial analytics functionality is deployable throughout the IIoT architecture. The capabilities 
needed for successful industrial analytics solutions are shown in Table 4-1, below. Each capability 
is realized by a set of functions defined by use cases that meet the stakeholders’ expectations, 
especially with regard to non-functional requirements. 

In a manufacturing use case, the plant operators visualize the conditions of the process line using 
graphical displays. When an alert appears, the operator drills down to the time-series records of 
the key parameters. Planning for the next run, the operator might use a similar drill-down to 
determine if there are any concerns that need to be addressed based on anticipated 
environmental conditions. 

The fundamental prerequisite for industrial analytics is availability and access to data from the 
industrial process and related assets. Data is collected close to the process through connections 
and stored, at least temporarily, where the readings can be scanned and evaluated depending 
on the type of analytics. The stored values may be discarded or archived for further calculations. 
Data scientists can explore the archived data using statistics to compute correlations, and apply 
algorithms to classify and cluster the evidence over time. Industry subject matter experts have a 
good understanding of the context and condition of the process and assets, and can interpret 
and validate the readings and recommend cleansing filters. It is this combination of data science 
and subject matter expertise that produces the best results. 

 

Figure 4-1. Analytics Mapping to the Industrial Internet Reference Architecture 
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Capability Description 

Visualize  Display and manage data readings and analytics results using a common framework 

Explore  Ad hoc experiments with historical data 

Design 
Automation of the data analytics stages; data quality, data mining, and business 
intelligence algorithm composition 

Orchestrate 
Delegate work requests over a cluster of computing resources, and collect and aggregate 
intermediate and final results 

Connect Exchange data and work requests between components using a common framework 

Cleanse 
Merge data sets from different data sources based on suitable criteria; remove irrelevant 
data and clean noise from data 

Compute 
Perform computation of statistical, first-principle and machine-learning model analytical 
calculations, including live analysis on streaming data, batch or ad hoc data mining and 
operation and business intelligence analysis 

Validate 
Ensure analytics results when applied in the context of the application and environment 
will not harm people or property. This function should be independent from the core 
analytics processing and act as a governor 

Apply 
Apply analytics results to various subsystems, including the automation systems (e.g. 
adjusting control parameters or models), operations and business processes, increasingly 
automatically or as information aiding human decision-making 

Store Archive and reproduce measured and calculated data streams, especially time-series 
sequences 

Manage Manage the information model, including data sources, computing resources and data 
analytics metadata 

Supervise 
Manage system reliability by ensuring processes are started and maintained, and that 
computer resources are not exhausted 

Table 4-1: Industrial Analytics Capabilities 

The industrial analytics workflow can be automated as the data and relationships are better 
understood. Given an appropriate framework, the automation is designed, configured and 
orchestrated to transform raw data into actionable results. The workflow and algorithmic 
content is versioned and deployed both on premise and in the cloud as needed to meet 
stakeholder expectations. The entire process is supervised to ensure all steps are completed and 
validated. Ideally, the industrial analytics solution evolves over time to produce better results 
using a minimum of resources, and to improve accuracy as more experience and historical data 
are acquired. 

The final step is to communicate and present the industrial analytics results in a compelling and 
easily understandable format, including charts, graphs, and recommended actions. Most 
important is to provide means for humans to interact with the results, starting with a summary 
and allowing drill down into the evidence that supports the recommendations. 

As analytics advances, more meaningful operational patterns, especially anomalies, will be 
detected, identified and reported as alerts, along with relevant supporting data, automatically. 
Root causes of faults can be automatically diagnosed and remedies or repairing actions can be 
prescribed; faults and failures can be prevented by ruling out improper operating parameters 
that are outside of the normal ranges and be predicted based on the historical experience of 
making similar parts. Machine operational efficiency can be monitored and optimized based on 
analytics results as well as orchestration of manufacturing resources and coordination and 
interaction of the prices of equipment and the people who operate them. 



Analytics Framework 5: Implementation Viewpoint 

IIC:PUB:T3:V1.00:PB:20171023 - 13 - 

Clearly, all these will improve the operational efficiency of manufacturing and operations and at 
the same time reduce the stress on human operators in keeping the machines operating at their 
best capacity. On the other hand, analytics is no magic by itself—it requires a combination of 
obtaining the proper data at the proper time, applying the proper analytics algorithms and 
models that are guided by the necessary engineering domain knowledge from both the machine 
manufacturers, system integrators and the plant operators themselves. This is a process of 
continuing learning and improvement. For example, the types of data collected can be extended 
and their quality can be enhanced, the algorithms and models can be subjected to refinement 
and deeper domain knowledge can be injected into the models. 

5 IMPLEMENTATION VIEWPOINT 

The implementation viewpoint deals with the technologies needed to implement functional 
components (functional viewpoint), their communication schemes and their lifecycle 
procedures. These elements are coordinated by activities (usage viewpoint) and supportive of 
the system capabilities (business viewpoint).  

These concerns are of particular interest to system and component architects, developers and 
integrators, and system operators. 

5.1 DESIGN CONSIDERATIONS 

To determine where analytics should be performed, the following considerations should be taken 
into account: 

Scope: Ultimately, it is the derived information (not the raw data) and how it can be acted on that 
determines what kinds of analytics are deployed, and where. For instance, if the goal is to 
optimize machine uptime at one site, then analytics performed on data gathered there may be 
sufficient. In this case, the analytics can be performed anywhere, provided that, if done remotely, 
the normal local operation is not critically dependent on network latency and the availability of 
the analytics results. On the other hand, if the value proposition is to optimize production across 
sites requiring comparison of factory efficiencies then analytics needs to be performed on data 
gathered from these sites and thus be available in a higher tier of the system architecture. 

Response time and reliability: In an industrial setting, some problems require deterministic 
analysis, computation and response; others can be done after the fact. The former almost always 
requires analytics to be local for reliability and performance. 

Bandwidth: The total amount of data generated by these sensors, together with data gathered 
from the control systems can be huge. The increased network and infrastructure required to fuse 
data from one domain with others will be compensated by the creation of valuable insights. 

Capacity: In some cases, it may be optimal to perform the analytics at a particular tier in a system 
architecture, but the existing infrastructure may not be able to support it, so a different tier is 
selected. Key properties of the ICT infrastructure include latency, bandwidth and computational 
capacity. 
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Security: The value from moving data must be balanced with concerns for transferring raw data 
outside of controlled areas, and the associated costs. It may be more efficient to perform some 
analytics locally and share necessary summary, redacted or anonymized information with other 
domains. 

Volume: All data needs to be stored, at least temporarily. The storage required depends on the 
application. 

Velocity: Industrial measurements are typically captured cyclically. High-frequency data, such as 
vibration or acoustics data from aircraft engines and wind turbines, can significantly increase the 
speed of data processing needed. Another consideration is transient events where readings must 
be captured with accurate time recording to determine order of occurrence, causality and root 
cause. With these low latency requirements, analytics using high velocity data is better 
performed close to where the data is measured. 

Variety: When many pieces of equipment have been acquired over the years with dissimilar 
controls, interfaces and available data, effective analytics depends on shared information models 
to understand the data highly varying in both format (syntax) and content (semantics) to deliver 
the expected insights. 

Analytics maturity: Analytics involves the processing of raw data (measurements) into 
descriptions (information) and then contextualizing the results (knowledge) and benefiting from 
historical experience (wisdom). The maturity of this process is not limited to where the analytics 
can be performed and as a design consideration is equally valid regardless of where the analytics 
are performed. 

Temporal correlation: One of the common issues in IIoT systems is correlating data between 
multiple sensors and process control states, including the temporal order at which the data is 
generated. Applying analytics closer to where the data is generated reduces the burden of 
correlation when the analytics is applied. 

Provenance: Performing analytics at a lower architecture tier maintains the genuine sources of 
the data as they progress through the IIoT system. 

Compliance: To illustrate how compliance may impact the analytics as a design consideration, 
national security is used as an example. National security concerns may place restriction on the 
architectural decision about data management and sharing with government regulations in 
industries like aerospace and defense. This will influence where the analytics must be placed to 
meet the regulatory requirements, for example, possibly preventing performing large-scale 
computation in a public cloud facility to lower the cost. 

Table 6-1 below is an example. 

The combination of all these factors determines what capabilities are required and where the 
analytics will be deployed. Generally speaking, which analytics and where the processing is 
located depends on the maximum acceptable network latency and jitter in response to events, 
criticality of the analytics in the normal operations (e.g. how bad it would be if the external 
network is cut or an upper-tier system becomes unavailable) and the cost of uploading large 
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amounts of data. From the deterministic response, reliability and resilience perspectives, it is 
optimal to perform analytics close to the sources of the data, and the analytics results need to 
be accessible for decision-making. In most systems, some form of hybrid approach with local and 
centralized analytics will be required. 
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 Industrial Analytics Location 

Evaluation Criterion Plant Enterprise Cloud 

Analysis Scope    

Single site optimization ✓ ✓ ✓ 

Multi-site comparison  ✓ ✓ 

Multi-customer benchmarking   ✓ 

Results Response Time    

Control loop ✓   

Human decision ✓ ✓  

Planning horizon ✓ ✓ ✓ 

Connectivity Reliability    

Site ✓   

Organization ✓ ✓  

Global ✓ ✓ ✓ 

Connectivity Bandwidth    

Raw data ✓   

Processed results ✓ ✓  

Summarized results ✓ ✓ ✓ 

Storage and Compute Capacity    

Server ✓ ✓ ✓ 

Multiple servers  ✓ ✓ 

Data center   ✓ 

Data Security    

Secret ✓   

Proprietary ✓ ✓  

Shared ✓ ✓ ✓ 

Data Characteristics    

Volume   ✓ 

Velocity ✓   

Variety ✓ ✓ ✓ 

Analytics Maturity    

Descriptive ✓ ✓ ✓ 

Predictive ✓ ✓ ✓ 

Prescriptive ✓ ✓ ✓ 

Event Correlation    

Sub-seconds ✓   

Seconds ✓ ✓  

Tens of seconds ✓ ✓ ✓ 

Data Provenance    

Sensor ✓   

Asset ✓ ✓  

Site ✓ ✓ ✓ 

Regulatory Compliance    

Asset ✓ ✓ ✓ 

Process  ✓ ✓ 

Industry   ✓ 

Table 6-1: Industrial Analytics Design Considerations 
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5.2 ANALYTICS CAPACITY CONSIDERATIONS 

The functionality for industrial analytics is informed by experience and wisdom from both IT and 
OT. Both expect reliable operation and repeatable response times. However, the way these goals 
are achieved is different. Information technology relies on elasticity to provide the required 
capacity and operational technology ensures determinism with engineered capacity. 

Elasticity is a cloud-technology measure of “the degree to which a system is able to adapt to 
workload changes by provisioning and de-provisioning resources in an autonomic manner, such 
that at each point in time the available resources match the current demand as closely as 
possible.” 1  For example, most retail businesses generate significant revenue during holiday 
seasons. All the IT systems need to be prepared and have enough capacity to avoid affecting 
profitability. The remainder of the year those resources can be scaled back or repurposed to 
reduce costs. 

Determinism is the ability to support computation and transmission of data within a 
predetermined time between connected devices and applications. Deadlines must be met with 
expectations that a work request will complete within the same response time for every request. 
The analytics and results must be communicated in a defined time-period and confirmation must 
be provided. Operational systems are designed with a capacity for continual processing, 
regardless of the state or condition of the plant. So, when a production plant starts up or shuts 
down, which can generate rapidly changing values and multiple alarms, the requirement for 
deterministic response in the IIoT system is no different from when the plant is at steady state. 

These two philosophies are in many ways complementary. Close to industrial processes, it is 
appropriate to provide reliability and predictability using dedicated resources. In the cloud with 
multiple tenants sharing the same set of resources dynamically, available capacity can be shifted 
to support different service level agreements. There are early signs that the manufacturing 
industry is moving in the direction of on-demand services to deliver just-in-time parts using 
shared assets. The World Economic Forum, in collaboration with Accenture, have predicted that 
this will become the long-term trend of manufacturing and there will be a convergence between 
the concerns between shared IT capacity on demand and manufacturing services. 2  In other 
industries, such as transportation and energy, there is movement towards services and shared 
capacity. 

5.3 ANALYTICS DEPLOYMENT MODELS 

The design and capacity considerations described above determine where the analytics will be 
deployed. Most IIoT systems use a hybrid approach to analytics deployment with analytics that 

                                                      
1 Herbst, Nikolas Roman; Samuel Kounev; Ralf Reussner (2012). "Elasticity in Cloud Computing: What It Is, 

and What It Is Not" (PDF). Proceedings of the 10th International Conference on Autonomic Computing 
(ICAC 2013), San Jose, CA, June 24–28. 

2 O’Halloran, et. al., (2015). “Industrial Internet of Things: Unleashing the Potential of Connected Products 
and Services” (PDF). World Economic Forum in collaboration with Accenture.   
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need to be performed with very low latency and in a deterministic manner deployed closer to 
the I/O at the edge; predictions that are not time sensitive or require data from sources that are 
distributed or historical in nature are deployed in the cloud. 

5.3.1 TYPES OF ANALYTICS 

Figure 5-1 illustrates the different types of analytics that can be performed and the types of data 
required to perform the analytics. 

Baseline analytics detect irregular behavior of the asset within milliseconds of the actual event. 
The data used to perform these analytics is usually local to the asset under consideration and 
relies on data acquired from the asset when it was working normally.   

Diagnostic analytics that identify the root cause of the anomaly such as a failing bearing in a 
motor requires previous knowledge of fault states. Diagnostics results can be returned in the 
order of minutes.  

Prognostic analytics that tell you the remaining useful life of a bearing can take in the order of 
hours to return a result and requires access to multiple types of data and from multiple sources 
to make the prediction.  

Figure 5-1 Types of analytics based on its applications 
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5.3.2 DEPLOYMENT LOCATION 

Figure 5-2 is an example of where these analytics could be deployed. 

5.3.3 DEPLOYMENT PHASE 

Deployment of analytics typically consists of three steps: 

• train a (predictive) analytics model, 

• test and validate the model on previously unseen data and 

• deploy the model to make predictions on real (streaming) data. 

Training and deployment of analytics models can be broadly categorized into the following three 
workflows: 

1. training of the model and the deployment (or inference) of the model is done in the cloud, 

2. training of the model is done in the cloud, while the model is deployed at the edge and  

3. training and deployment of the model is done at the edge. 

Figure 5-3 A deployment pattern of analytics during its different lifecycle stages 

Figure 5-2 A deployment pattern of various type of analytics 
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Figure 5-3 illustrates the three workflows for the training and deployment of analytic models. 

For the first workflow, once the model is trained in the cloud and the deployment of the model 
is usually deployed as a web service. Data acquired from sensors at the edge is sent to the model 
via the web service. Predictions from the model can be returned to the edge through the web 
service if required. 

In the second workflow, once the model is trained in the cloud the model is deployed to the edge. 
For deployment, the model is usually exchanged between the cloud and analytic algorithms 
running at the edge using a standard interchange formal such as PMML1 or JSON2. 

Analytic models can be deployed at the edge on heterogeneous computing elements, such as a 
CPU, GPU or FPGA. For example, FPGAs are ideal deployment targets for very low latency 
applications.  

5.4 DATA PRE-PROCESSING, TRANSFORMATION AND CURATION 

Data preparation accounts for about eighty percent of the work of data scientists.3 “Messy data 
is by far the most time-consuming aspect of the typical data scientist’s workflow”. Exploratory 
analysis of raw data will often reveal distributions that are skewed, affecting how relationships 
in the data can be effectively characterized with machine learning classifiers. The relationships in 
the data may be inconclusive, however, transforming the records may clarify these relationships. 

The same survey shows that data scientists spend 60% cleaning and organizing the data, and 19% 
of their time getting access to and collecting the records. Identifying the significant features of a 
data set is the first step to transform raw data into information. It is also beneficial to reason 
about relationships that may exist in the data.  For example, if a feature is correlated with another 
variable in the dataset, converting it into a ratio that cancels the effect of that bias may improve 
the accuracy of the analytics results. 

Several researchers go into more detail regarding their work4 with big data. They recognize that 
data is imperfect due to missing values, inaccurate measurements, and too many independent 
variables. To address these challenges, techniques are used to simplify and clarify the 
dimensions. For example, the number of independent variables used in the analysis can be 
reduced using statistical techniques to identify correlations. Consulting with subject matter 
experts helps to understand why variables depend on one another, providing guidance which 
combinations of variables should be used as features to train machine learning models. Another 
technique is to reduce the number of records that need to be processed by classifying the states 
and maintaining the distributions of the readings. On the other hand, curated data can be used 
in artificial ways to reinforce the original measurements to fill regions of the domain of the 

                                                      
1 http://dmg.org/pmml/v4-1/GeneralStructure.html 
2 http://www.json.org/ 
3 “Data Science Report”, CrowdFlower (2016). 
4 Garcia, S., Ramirez-Gallego, S., Luengo, J., Benitez, J.M., Herrera, F., “Big data processing: methods and 

prospects”, Big Data Analytics, 1:9 (2016). 

http://www.json.org/


Analytics Framework 1:  

IIC:PUB:T3:V1.00:PB:20171023 - 21 - 

problem which have no representative examples in the original data. Finally, raw data can be 
discretized into buckets to reduce the noise of the measurements and reduce the complexity of 
the algorithms. 

When reviewing the time dimension in historical data, a combination of transformations may 
need to be considered based on either: seasonality and trend patterns, or to stabilize the variance 
in the data.  This reduces the impact of time in order for the data to be better statistically 
assessed.  These transformations aid in generating forecasted values with greater accuracy.  
Transformations can be mathematical or based on adjustments such as using indexes to 
represent a current or scaled value of the series. Additionally, differencing is a type of 
transformation that adjusts for the seasonality and trend patterns to stabilize the mean of the 
series prior to using the data in certain time series algorithms.  Differencing seasonality produces 
a representation of the current data with its corresponding data from the previous year. 

These transformation approaches optimize how to measure information by selectively altering 
the shape of the distribution in a way that is still aligned with the broader business and strategic 
perspectives of each use case.  The goal of the data transformation phase in machine learning is 
to simplify complexities which may exist in the data such that the information more appropriately 
falls within the parameters of the algorithms. 



Analytics Framework 6: Artificial Intelligence and Big Data 

IIC:PUB:T3:V1.00:PB:20171023 - 22 - 

6 ARTIFICIAL INTELLIGENCE AND BIG DATA  

Innovation in artificial intelligence and big data is expected to play an increasingly important role 
in industrial analytics.  

This chapter looks at taxonomies of artificial intelligence and emerging computational techniques 
in big data in relation to industrial analytics.  

6.1 BIG DATA ANALYTICS 

Big data analytics cuts across IT (information technology) and OT (operational technology), data 
and roles. Big data requires computational systems and networks to be designed around the 
data. It will transform how businesses operate and the digital/physical divide. 

There are numerous emerging definitions for big data. One definition is “data set(s) with 
characteristics (e.g. volume, velocity, variety, variability, veracity, etc.) that for a particular 
problem domain at a given point in time cannot be efficiently processed using 
current/existing/established/traditional technologies and techniques to extract value”.1 

Big data differs from traditional data storage and processing applications in five ways: 

• volume: too big, 

• velocity: arrives too fast, 

• variability: changes too fast, 

• veracity: contains too much noise and 

• variety: too diverse. 

Applications generating these data or requiring their analysis may have one or more of the above 
aspects present. 

In addition to the “5Vs” above, the machine and operational data have their own features such 
as higher correlation, sensitivity to time order and historical context.  Industrial big data are 
processed and analyzed for various application scenarios and purposes such as industrial 
automation, system health monitoring, predictive maintenance and remote operation. 

To support these application scenarios, diverse big data analytics functions are performed, 
including but not limited to: 

• complex aggregation analysis: to profile information of different time periods or 
locations, 

• multi-dimensional query and analysis: to examine and deep-mine the machine data from 
different perspectives, 

• log data analysis: to monitor system and operational health, 

• time-window based stream data analysis: to identify temporal features and trends and 

                                                      
1 ISO/IEC JTC 1 Big Data Preliminary Report 2014 
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• complex event processing: to detect patterns and anomalies. 

As shown in Figure 6-1, the big data analytics platform need to address and support the 
processing of multi-typed input data from a large quantity of sensors or machines. To thoroughly 
analyze and mine the data (either real-time or historical) for value, diverse types of queries and 
analyses need to be applied. For in-time condition detection and decision making, these big data 
analyses need to be completed under throughput and latency requirements.  

 

Analytics functions usually face stringent requirements in an industrial environment such as: 

• high-performance in data loading, 

• query and analysis, 

• a single copy of input data for different types of analytics and 

• fast response to concurrent queries and commands. 

6.2 ARTIFICIAL INTELLIGENCE  

Artificial intelligence (AI) technology, with its rapid development, is increasingly used in industrial 
analytics to improve the analysis efficiency and accuracy.  

The term artificial intelligence (AI) describes the analytics algorithms and frameworks used in 
IIoT. Two branches of AI are considered: 

• machine learning (ML) and  

Figure 6-1 Example of Multi-Typed Data Processing in Big Data Analytic Systems 



Analytics Framework 6: Artificial Intelligence and Big Data 

IIC:PUB:T3:V1.00:PB:20171023 - 24 - 

• deep learning (DL). 

In IIoT applications, machine learning and deep learning provide new approaches to build 
complex models of a system or systems using a data-driven approach. Instead of using the 
physics-based models of the systems to describe the behavior of the system, ML and DL contain 
algorithms that can infer the function of the model from sample input data. These models are 
then used to make predictions on the state of the system. This is commonly referred to as 
predictive analytics. 

6.2.1 MACHINE LEARNING 

The workflow for developing and deploying models based on machine learning can be divided 
into a number of steps. 

Figure 6-3 illustrates the steps involved in deploying a machine-learning model. 

Data collection is the first step and involves data acquisition and data preparation.  

Feature engineering extracts important information from the raw data that have been collected. 
This step usually comprises two parts: feature extraction and feature reduction.  

Feature extraction is the process of converting raw data to information that relates to the 
physical state of source of the data (asset). Consider an analytics model that is created to monitor 
the health of a motor by measuring the motor’s vibration using an accelerometer. Information in 
the frequency domain expresses more information about the state (normal and failure modes) 
of the motor than the time domain. Therefore, in the feature extraction step the waveform 
information is converted to the frequency domain and the amplitudes at certain harmonics are 
used as the features that are input to the model. In a typical application, data are collected from 

Figure 6-2 Artificial Intelligence (AI) 

Figure 6-3 Workflow for developing analytic models 
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multiple sources and this may result in redundant information in the features that are extracted 
from the data.  

The feature reduction step reduces the number of features by selecting a few features or 
transforming the features to a lower dimensional space without reducing the discriminatory 
properties of the features. The resulting reduced set of features is usually represented as a vector 
(or array) and input to the machine-learning algorithm in the next step. 

Figure 6-4 is an example of a feature-engineering step. It shows how the spectrum information 
of the current signal measured from a motor can be used to classify failure conditions in the 
motor. Figure 6-5 shows an example of a spectrum feature engineering process. 

The analytics methods and algorithms used to create the models can be broadly classified in two 
categories: supervised and unsupervised. This classification is based on the nature of information 
contained in the input data that algorithms use to infer the function of the model. Both types 
need validation.  

Figure 6-4 Mapping features to failure conditions for a motor 
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In supervised methods, the algorithm is presented with pairs of input data and desired output. 
This data is referred to as labeled data. The algorithm learns the function that maps the inputs to 

the outputs. Consider the example of a model that is created to monitor a water pump for a 
cavitation fault. The pump is instrumented with sensors that measure various parameters of the 
pump such as the horizontal and vertical vibration of the motor and the in-flow and out-flow 
pressures. The training data for a supervised algorithm will contain example features extracted 
from sensor measurements for both normal and fault condition of the pump, with each example 
clearly indicating the operating state. 

Supervised algorithms are useful when it is feasible to acquire training data for the different 
states (or classes) that need to be modeled. The training data needs to be balanced, that is, there 
should be enough samples for each output state or class. In the pump example, supervised 
methods can be used when data for both the normal and the cavitation operating state is 
available. In the case, there are two classes. Supervised algorithms can be easily extended to 
learn multiple classes or states. For example, a supervised machine learning algorithm can be 
used to detect various fault conditions in a bearing such as outer race fault, inner race fault etc. 

Unsupervised methods do not use labeled data. These algorithms find structure in the input data 
on its own. These methods are good for discovering hidden patterns in the data. Unsupervised 
methods are typically used when labeled data is not readily available; where the instances of 
normal behavior are more frequent than faults. A common use of unsupervised learning 
algorithms is for density estimation of a function. For example, an unsupervised learning 
algorithm such as the Gaussian Mixture Model (GMM) can be used to estimate the density 
function that represents the normal operating condition of an asset. In this case, the model is 
learned based on data acquired during the normal operation of the asset. Once the function has 
been learned, the GMM model can then be used to determine the health of the asset by 
computing the distance of the current estimate of the function based on the latest data from the 
center of the estimate of the normal (or base) function. This distance (or probability) is used to 
detect when the asset starts to deviate from normal operation. 

Figure 6-5 Spectrum feature engineering process 
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Another commonly used category of unsupervised learning algorithms is clustering. Clustering 
group objects (input data) together in such a way that objects that belong to a group or cluster 

are more like each other than those in another cluster. We can use clustering where the asset 
may operate in different “normal” regimes (for example when the load on a motor may increase 
or decrease over time). In this case, clustering is used to detect different regimes and GMMs are 
used to estimate the normal behavior within each regime. 

The taxonomy of machine learning algorithms is given in Figure 6-7 for a brief overview. 

One of the challenges with traditional machine-learning techniques is the need for features to be 
extracted from the raw data for creating good models. Feature extraction is usually a brittle 
process and requires the knowledge of a domain expert. It is usually the point of failure in the 
analytics workflow. 

Figure 6-7 Taxonomy of machine-learning algorithms 

Figure 6-6 Health assessment using Gaussian Mixture Model 
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6.2.2 DEEP LEARNING 

Deep-learning algorithms have recently gained popularity because they remove the need for the 
feature-engineering step. Figure 6-8 illustrates the deep learning workflow. 

Note that in contrast to the machine learning workflow, the feature-engineering step is not 
present. Data acquired from the sensors (raw measurements) can be directly input to the deep 
learning algorithms.  

Deep learning algorithms are largely based on artificial neural networks (usually called neural 
networks). Artificial neural network learning algorithms are inspired by the structure and 
functional aspects of biological neural networks. These algorithms are structured in the form of 
an interconnected group of computational nodes (artificial neurons) organized in layers.  

The first layer is the input layer that interfaces to the input signal or data. The last layer is the 
output layer and the neurons in this layer output the final prediction or decision. In between the 
input and the output layer there are one or more hidden layers. By using multiple hidden layers, 
deep learning algorithms learn the features that need to be extracted from the input data 
without the need to input the features to the learning algorithm explicitly as in the case of 
machine-learning algorithms. This is called feature learning.  

Deep-learning algorithms require large amounts of training data and are computationally 
intensive. Deep learning has seen recent success in IIoT applications mainly due to the coming of 
age of technological components: 

• advances in computation power with GPUs, FPGAs and CPUs, 

• availability of large data repositories with labeled data to train these networks (e.g. 
ImageNet) and 

• access to established open source deep learning software frameworks such as 
TensorFlow, Caffe, Theano, CNTK etc. 

There are many deep-learning algorithms,1 and the selection depends on the problem to be 
solved. The two most commonly used deep-network topologies for IIoT applications are 
convolutional and recurrent. 

Convolutional Neural Networks (CNNs) are designed to take advantage of the structure of input 
signals such as an input image or a speech signal. A convolutional network comprises one or more 

                                                      
1 http://www.asimovinstitute.org/neural-network-zoo/ 

Figure 6-8 Deep learning workflow 

http://www.asimovinstitute.org/neural-network-zoo/
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convolutional layers (filtering layers) followed by a fully connected multilayer neural network. 
These networks are successful in problems such as image classification and object recognition. 

Recurrent Neural Networks (RNNs) are based on algorithms that make use of sequential (or 
historical) information to make predictions. These networks are good for time-series analysis. A 
traditional neural network assumes that all inputs and outputs are independent of each other in 
time or order of arrival. RNNs on the other hand record state information that stores information 
about the past and uses the information calculated so far to make the next prediction. RNNs are 
good for learning historical behavior and predicting events in the future such as remaining useful 
life (RUL). The most commonly used type of RRN is the long short-term memory network.1 

                                                      
1 https://en.wikipedia.org/wiki/Long_short-term_memory  
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7 ANALYTICS METHODS AND MODELING 

This chapter provides a survey of methods, models, algorithms and frameworks used for 
industrial analytics applications.  

7.1 ANALYTIC METHODS AND ALGORITHMS 

Streaming analytics is performed on data-in-motion to get high-throughput, low-latency 
actionable information so that industrial applications can respond to events in a timely manner. 
The speed layer, as shown in Figure 7-1, in the system performs fast, incremental algorithms on 
data as they are received and is usually performed close to the data sources to manage large data 
throughput, latency, reliability and security more effectively. For example, streaming analytics 
can be used to analyze wind turbine operations parameters (such as rotational speed, torque, 
blade pitch) and environmental data (such as wind speed and direction) to adjust the pitch values 
dynamically to maximize the electricity generation without causing damage to the turbines. 

Batch analytics on the other hand is applied on all available data and aims to provide very 
accurate results, but with higher latency. This data can be historical in nature from a given 
source—months or years of data collected for a given wind turbine, and from sources that are 
spread out geographically—data from all wind turbines in a fleet. There are no restrictions on the 
type of computations that can be done in the batch layer, but they make take hours or days to 
complete. Batch analytics, usually performed in big data platforms, are widely used to identify 
and capture hidden patterns in the data set. Increasingly, it is used to build models, for example, 
to train and test deep learning models, before they are deployed back to streaming analytics 
environment to capture patterns in near-real time.  

7.1.1 STREAMING REAL-TIME ANALYTICS 

The lambda architecture is a common pattern in industrial analytics that splits the data analysis 
into two separate concerns: master/batch/serving and speed. This section addresses the latter.  

Stream analytics are not unique to the industrial internet. The financial industry used them for 
high-speed trading and arbitrage, and they have since spread to industry and media. Streaming 
analytics aggregate data sources comprising discrete events, digital, analog and waveform data. 
Each type of data requires special treatment and statistical processes to transform the data into 
a usable event stream that can be aggregated into higher semantic information models. Stream 
processing also takes repetitive data produced from sensors and control systems and reduces 
the repetition to make more efficient use of bandwidth. Statistical downsampling and outlier 
elimination are also used to increase the efficiency of connected devices where the raw data are 
not required for higher-level business systems. 
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One of the primary tools commonly used in stream analytics is complex event processing (CEP). 
CEP also started in the finance industry where high-speed analysis of market data and orders 
made deterministic statistical analytics a necessity and led to many of the tools that are now 
being applied to IIoT. CEP uses a combination of statistics and patterns expressed as rules to 
combine multiple event streams from multiple sources and create actionable higher-level events. 
The events can be re-introduced to the event stream and combined with additional data sources 
to provide context and infer higher-level understandings that are of greater value. CEP has been 
used in many production systems successfully and many open-source tools are available. 

One of the main differences between stream analytics and batch analytics is the amount of data 
used for the analysis. Stream analytics assume that they will be operating on time series data-in-
motion where the necessary reference data is known a priori and cached. Aside from the context 
of the data feeds coming into the analytical system, it is usually desirable to have minimal data 
access. The principal concern of stream analytics is fast computation of events where the 
intermediary computation and events are often kept in–memory and reference data is cached to 
reduce latency as much as possible.  

In deterministic stream-based analytics, the end-to-end analysis and detection of actions must 
be completed within the window of time available to prevent or actuate the changes to ensure 
proper operation. For example, in CNC machining, CEP can be used to detect events like tool 
break in certain conditions by collecting contextualized data from the CNC controller and tool 
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Figure 7-1 Lambda Architecture 
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management system to determine when a certain set of events occur.1 Rules of this type will 
need to be designed around the target process considering the material types and properties of 
the tooling and the machine. The action that occurs as a result of a rule can have direct effect on 
the equipment or may require a human to validate the inference. As the analytics become more 
reliable and the inferences are trusted, the human validation step can be removed and the 
analytics can directly change the operational state of the equipment. 

7.1.1.1 CONCERNS ABOUT TIME 

Time windows are a common construct of stream processing and CEP. They allow the application 
to apply a statistic (for example maxima, minima, average, counts) that spans an interval. All 
statistical operations in a stream analytics system have an implied time-period on which they act. 
Windowing also allows for the reduction of data that must be retained since only the necessary 
history is kept. For example, streaming analysis will capture data for a given period of time and 
then compute either at a given frequency (average over the last minute) or by using a rolling 
statistic (average every second using a one minute window). 

Streaming data by its nature is temporal and must have a timestamp associated with each 
observation. The time stamp should be applied as close to the source as possible to ensure its 
accuracy. Causal relationships can be then be asserted across multiple data sources, which 
requires synchronization of clocks. In practice, assigning a timestamp at the time the data has 
been reported or observed is simplest for both statistical and time-series data sets. 

The temporal dimension is a primary concern of stream processing. All the event-based patterns 
are built around time-dimensional, causal and contextual relationships between the data 
streams. The expression of the relationships between events and intervals allows the 
interpretation on whether an observation occurs before, after, within, or concurrently, thus 
constraining the analysis to “when” a certain state was observed or active. 

7.1.1.2 STATISTICAL ANALYSIS 

The first step in stream processing is to preprocess the data into a form that it can be analyzed. 
This usually requires various statistical- and signal-processing techniques such as Fast-Fourier-
transformation (FFT) and high- and low-pass filters for analog data. Simple statistical methods, 
such as means and averages, are common as well as linear algebra kernel transformations for 
image and other complex data. The resulting data is a set of events and time series observations 
that can be used for pattern matching or higher-level analytics. 

Deriving the initial transformation is often one of the harder tasks in stream processing. The 
development of the transformations is usually performed using batch systems to experiment 
with various methods on historical data to find the most effective method that will produce 
events that with highest certainty with respect to their use case. With many industrial use cases, 
there is substantial context that must be considered when performing the analysis. What may 

                                                      
1  Such as a load less than 10 percent when the spindle is spinning and the machine is moving in a 

contouring type of motion for more than 30 seconds. 
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hold true when a physical system is in one state may not hold true when it is in another. This 
process is most often curated by domain experts who verify the behavior of the models. 

7.1.1.3 EDGE, DATA AGGREGATION AND DOWNSAMPLING 

In the cloud, analytics is usually a combination of both stream and batch, whereas at the edge, it 
is almost exclusively stream processing because of the constraints in computational capability, 
accessibility to data and the need for determinism. Common example use cases of edge 
streaming analytics include: downsampling of data, data aggregation, adaptive control, statistical 
analysis, process control, maintenance and error detection and correction. 

By performing stream processing at the edge, the communications and computational overhead 
on upstream systems can be greatly reduced. Additional benefits may include the removal of 
unwanted detail for anonymity of the data and privacy of the supplier, balanced with the loss of 
detail in the data and the inability to reproduce a complete account of the events. It is difficult to 
balance the various concerns to collect just enough data to provide desired business value. 

In many systems, there will be an initial dump of highly detailed raw data with no filtering and 
transformation. From this raw data, the analytical models will be developed and tested to ensure 
that the transformation are not too aggressive leading to missing critical events. When the 
models are sufficient for the purpose, they can be deployed in the streaming architecture. The 
models may not be complete, but they will be continually evolving and replaced as new 
discoveries arise. Most streaming platforms can deploy new models as needed in a continuous 
improvement cycle. 

7.1.2 BATCH-ORIENTED ANALYTICS 

Batch analytics can be used in multiple ways: 

To improve the accuracy of the analytics (or models) deployed in the streaming layer: The 
analytics used in the streaming layer are sometime fast approximations of the exact analytics 
that need to be run on the data. This may be due to limited capacity available or the limited 
exposure to long-term trends in the data. The batch layer enables improvement of the model 
deployed in the streaming layer by periodically updating the model as more data are observed. 
This allows the approximate models running in the streaming layer to be corrected over time. 

Perform analytics that require data from multiple sources that may be distributed geographically. 
In IIoT applications streaming analytics is usually performed at the edge, close to the physical 
assets. These analytics may run on an edge-computing node1 that acquires data from sensors 
measuring information from one asset, such as a wind turbine or a single automated test system. 
The analytics running on an edge-computing node has limited exposure to data and state of other 
similar assets that are being monitored. This information on a class of assets can be useful in 
making more accurate predictions. For example, the anomaly detection analytics running on a 
wind turbine has limited knowledge on the current operating conditions of other turbines in a 

                                                      
1 It in fact can be a controller, an IoT gateway, a server or even a cluster of servers, deployed in proximity 

to the assets. 
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fleet. By comparing the current state of a turbine to the others in a fleet, batch analytics can be 
used to detect true anomalous behavior of a turbine from operating conditions that may be 
affecting the entire fleet. 

The master/batch/serving layer performs two functions. First, it manages an immutable master 
dataset that contains all the data that has been collected up to the current time. Second, it 
enables low latency analytics to perform on the entire master dataset on-demand. Instead of 
performing the analytics on the entire dataset when information is demanded through a query, 
the batch layer precomputes batch views of the data over time. The batch views can then be 
quickly queried to provide low-latency results. The master/batch/serving layer indexes the batch 
views to serve queries with low latency. 

Here are some considerations when designing the master/batch/serving layer: 

Data fidelity: In the batch layer, storing the data in the rawest form available is very valuable as 
keeping the raw data provides the flexibility to run new types of analytics and obtain new insights 
from the data. Storing only the preprocessed data (such as statistical features extracted from the 
data) limits the amount of information available from the data. The tradeoff is the cost of storage 
and data transportation.  

Analytics: There are no restrictions on the type of machine learning or deep learning algorithms 
that can be performed in the batch layer. Deep learning frameworks rely on large amounts of 
data and are more effective to train on machines equipped with GPUs or FPGAs. There are a 
number of open source machine learning and deep learning tools that integrate well with open 
source big data platforms, the discussion of which is outside of the current scope of this 
document.  

Reconciling speed and batch: Periodically, the results from the batch layer will override insights 
from the streaming layer. Given a query, the serving layer will merge real-time results with the 
batch views.  

Drawbacks: The main drawback of the lambda architecture is the need to maintain two separate 
code paths and execution modules (speed and master/batch/serving). Emerging architectures 
unify both streaming and batch processing under a single execution model. 

Figure 7-2 illustrates the application of the lambda architecture to a predictive maintenance 
application. The analytics (machine learning and deep learning) models are in the batch layer 
because of the time required to train these models, computational resources and the amount of 
historical data required for training. They are then run either in the speed or batch layer. The 
choice of the layer to deploy the analytics is based on criteria such as the maximum latency within 
which the predictions are expected, the sources of data (local or distributed) and security of the 
data. For example, event and anomaly detection analytics can run in the speed layer because of 
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the need to make predictions with low latency, while diagnostic and prognostic analytics can be 
run in the batch layer.  

The kappa architecture is an emerging software architecture pattern that simplifies the lambda 
architecture. In this architecture, the batch layer is removed as shown in Figure 7-3. 

The data is stored in an immutable, append-only log database using a distributed stream 
management system that start multiple stream processing jobs that can be used to combine 
speed processing as well as batch processing. For example, one job could be evaluating only 
current data and writing the output to the serving database. Another job could be looking at 
historical data in the stored log to get more accurate results. 

Figure 7-2 Lambda Architecture - Streaming and Batch for IIoT 

Figure 7-3 Kappa architecture 
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7.2 ANALYTICS MODEL BUILDING 

The analytics process is shown in Figure 7-4. The first step is to collect and prepare the data by 
removing or filling in missing data, extracting features from the data that are relevant to the 
application and optionally reducing the number of features. 

7.2.1 ALGORITHM SELECTION 

Analytics model building is next. Analytics models fall into three major categories: descriptive, 
predictive or prescriptive, as described in Getting Started with Industrial Analytics above. For 
each category, there a multiple machine learning or deep learning algorithms that can be used 
to build the model and the performance of these algorithms differ depending on the types of 
data being analyzed and the predictions to be made. So we should select a few algorithms in each 
analytics category and then iterate through them to identify the one that works the best for the 
current data and application. Table 7-1 shows some machine-learning algorithms that can be 
used to build analytics models, classified based on the major categories. For example, an anomaly 
detection model can be built using a one-class support vector machine (SVM) or a Gaussian 
Mixture Model (GMM).  

Along with algorithm selection there are two other import aspects of the model building process. 
First is on how the data is used to train the model. The second is how to compare the 
performance of these algorithms and select the best one.  

Figure 7-4 The model building process 
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Table 7-1 Machine-learning algorithm options for building analytic models. 

7.2.2 CROSS-VALIDATION 

To be able to test the performance of a model, we need two sets of data. One set is for training 
and the other is for validating the performance of the model on data it has not seen before.  

Using the same data for training and testing the model can result in the model “memorizing” or 
overfitting the data. Overfitting manifests itself as a model that performs with high accuracy 
during training but poorly on new data. Cross-validation mitigates this issue.  

With cross-validation the available dataset is split into training and testing data as shown in Figure 
7-5. During cross-validataion, the master dataset is randomly divided into k folds (subsets) of 
equal size. k-1 of these subsets are used to train the model and remaining fold is used to test the 
model. This process is then repeated k times. The model’s performance is then the average of all 
k test sets. A split of 70% (training) to 30% (testing) is typical. 

7.2.3 PERFORMANCE METRICS 

For supervised learning algorithms, the performance of the model is usually measured by looking 
at the classification errors. Because the training and testing datasets are labeled data, we know 
what the expected (or true) output is. This information can be used to bin the predictions results 
into different categories as shown in Figure 7-6, which shows the types of error for a binary 
classification. For an anomaly detection model condition positive is the detection of a failure or 
anomaly.  

Figure 7-5 Splitting data for cross validation 
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8 SYSTEM CHARACTERISTICS AND CROSSCUTTING FUNCTIONS RELATED TO 

ANALYTICS 

The business, usage, functional and implementation viewpoints facilitate a systematic way to identify 
IIoT analytics system concerns and their stakeholders, to bring similar or related concerns together 
so they can be analyzed and addressed effectively. The deliberation of the concerns is often 
performed within each of the viewpoints to which they belong, but they should not be resolved in 
isolation to those in other viewpoints.  

Industrial analytics requires many services from components of an industrial system, including 
connectivity and data management. The closest dependency will be the data management 
system that provides the raw material for the analytics. This Industrial Analytics Framework 
provides business and market drivers with guidelines in respect to the contexts and correctness, 
but stops short of addressing the ownership and chain of custody (data management) issues 
required. These concerns will be fully addressed in other documents. This framework provides a 
set of dependencies and requirements for both the collection, storage, and communication of 
data to other parts of the industrial processes. 

8.1 SAFETY 

The industrial internet has the potential to deliver value, but also to cause unintended loss. Unlike 
traditional information technology, the unintended harm from industrial analytics could result in 
human injury or loss of life. The mitigation of this risk is to design industrial analytics processes 
and computations to prevent unintended operation and independently validate that the 
resulting actions do not harm life or property. 

The first line of defense comes with the security expectations for authentication and 
authorization. Role-based administration and control prevents an unauthorized actor from 
manipulating industrial analytics data or processes. The second line of defense is provided by the 
data management expectations for information models, reducing the unintended consequences 
of ad hoc configurations of system components. A common representation for types and their 
attributes enables simpler industrial analytics application design and realizations that business 
owners can verify and validate. The third line of defense comes with the connectivity 
expectations for reliable data synchronization between tiers. Missing or incomplete data sets 
could contribute to out-of-bound industrial analytics calculations. The fourth line of defense is to 

Figure 7-6 Confusion matrix showing types of classification errors for a binary classification problem 
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post-process industrial analytics results to confirm they are in the expected range, and engage a 
human in the loop to review anomalies. 

8.2 SECURITY 

The industrial internet is only as secure as its weakest link and should provide defense in depth 
so that if a malicious or unintended action compromises one security or accountability measure 
then another measure still guards the assets. On the other hand, there are architectural quality 
penalties such as reduced performance and scalability if security is the only consideration. The 
compromise is to secure only the sensitive (as defined by the business) data and govern who has 
access to critical resources. This approach increases the operational overhead to identify the 
sensitive content and manage it separately from everything else. These security mechanisms 
should be common across tiers and leverage a federated identity infrastructure for ownership, 
authentication and authorization. 

First, the data management components should encrypt sensitive data-at-rest, and the 
connectivity protocols should perform the same functions for data-in-motion. Encryption is used 
both within a tier and for synchronization between tiers to prevent improper access. Only 
authorized clients, with appropriate credentials, should be able access the data based on 
established policies and protocols. Second, stakeholders can configure security domains to 
protect and manage access to industrial analytics processes and data based on defined attributes 
and scopes. The owner configures this role-based administrative control for authenticated 
clients, defining the policies by which sharing is allowed. This capability protects intellectual 
property and sensitive information. These policies synchronize across tiers so transfer of data 
does not implicitly cause transfer of ownership. 

8.3 DATA MANAGEMENT 

The industrial internet creates business value for a wide range of industrial processes and assets. 
Each asset has a set of static and dynamic characteristics tracked over time to gain insight, e.g. 
from historical records captured in the form of data, both raw and computed. The curated data 
(i.e. those stored in an historian) should be common across tiers and accessible using a federated 
information model that supports search, classification and markup to enable rapid industrial 
analytics application development. 

First, a best practice for industrial analytics is to collect and store data in their rawest form, 
because the data-cleaning process to curate the data could remove the most important anomaly 
needed at a later date. But it is inefficient to clean data repeatedly for each computation if the 
results of that process are the same. The compromise is to store the data twice, once in its raw 
form and again in its curated form, updated periodically. The industrial analytics expectation for 
this curated form is common across the tiers. For example, the rules and controls must apply to 
the data uniformly. Second, asset types and instances are crucial aspects of the industrial 
ecosystem: discoverable, navigable and organized independent of naming conventions. It is 
unrealistic that all industrial internet applications will agree on a common taxonomy and 
attributes, but the mechanisms for organizing them can be common. Classification and markup 
of types in this information model apply to related instances and property values. The 
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expectation is that federation of multiple information models within a tier provide a broad view 
of the available storage. Third, semantics must be maintained for the information to continue to 
be meaningful. Proper context of the data increases the success and accuracy of the analytics 
systems. Fourth, data lineage (provenance) provides considerable value to analytics as it supplies 
attribution of the data sources. For example, this lineage allows for quicker debugging and for 
tracking error propagation. 

8.4 CONNECTIVITY 

The industrial internet is a distributed architecture by design. This is necessary because, unlike 
traditional cloud computing (for example associated with online retail), the system produces raw 
data geographically separate from where the resulting information delivers business value. A 
distributed architecture requires connectivity between components, not only between 
collocated processes but also across wide-area and global networks. 

First, connectivity within a tier is expected to be more reliable than communications across tiers. 
It is more likely that applications deployed within a tier, including local access to data and 
processing, will deliver valuable results compared to applications depending on resources across 
multiple tiers. The industrial analytics expectation is that there needs to be a capability for 
efficient and reliable synchronization of data between tiers when connectivity is available.  

Second, IIoT systems typically incorporate multiple vendors in a deployment, potentially with ad 
hoc connectivity relationships and more than one communication protocol. There should be 
mechanisms for industrial analytics components within a tier to synchronize with each other 
without needing to know the deployment configuration or end-to-end protocols.  

Third, response time is expected to be quicker within a tier compared to across tiers.  If the 
analytics need to produce value close to real-time, then the expectation is that they need the 
connectivity at that tier. 
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 Annexes 

Annex A EXAMPLE ANALYTICS STANDARDS 

This annex provides an example of an analytics standards ecosystem using the manufacturing 
vertical as an example. 

ANNEX A SECTION 1 STANDARDS ECOSYSTEM 

There are three primary categories of standards relating to industrial analytics that range from 
cross-domain to domain-specific: standards that address cross-domain systems engineering and 
simulation, those that provide domain specific performance metrics, and those that specify 
operational analytics for asset maintenance and function. There are other standards that will 
affect the analytics, such as design standards that are used to model the form and engineering 
function of the product and can be used throughout the lifecycle to provide a digital surrogate. 

Only the first category, system-engineering standards, can be applied to almost any domain. The 
most prevalent standard in this category is SysML that is developed, owned and maintained by 
OMG. SysML provides a general-purpose language for systems engineering and a framework for 
expressing the specifications, analysis, design, verification and validation of engineering models 
(Figure 8-1). It was designed to address the concerns of model exchange between software 

 Figure 8-1 SysML for specifications, analysis, design, verification and validation of engineering models 
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systems and is the most widely adopted standard to date. There are other standards that are 
more domain-specific, such as STEP (ISO 10303 – AP233) in the manufacturing domain, but AP233 
has been largely subsumed into SysML. 

Beyond the engineering model exchange standards, the remaining standards tend to be focused 
on domain-specific concerns. In many domains these include specifications for operational 
metrics that are expressed in a set of objective and subjective formulae that can be applied to 
data from given systems to provide a business value metric. Since the business value metrics are 
all domain specific, the formulae are domain specific as well. These metrics can be applied at 
various degrees of specificity narrowly within a given domain. 

For example, the OEE metric defined the Overall Equipment Effectiveness metric for 
manufacturing equipment comprises three components: the availability or utilization of the 
equipment, the performance of the equipment, and the quality of the parts. The components are 
then multiplied to provide a singular value that is a rough indicator of a piece of equipment’s 
production capability. The standard is used across continuous process and discrete 
manufacturing, but in many cases, it fails to provide actionable information in discrete 
manufacturing. This is an example that even domain standards will have certain use cases within 
those domains where they perform better. 

There are many standards in manufacturing that provide efficiency and effectiveness metrics that 
span from production performance to quality. These standards are often not known beyond 
practitioners in the domain and often have little applicability outside the confines of that domain. 
Therefore, the consideration of standards must evaluate the ecosystem in which the application 
lives and review the available standards within that ecosystem. 

It is useful to evaluate other domains to see if there are developments within that domain that 
are applicable in other domains. For example, there may be standards or methodologies in 
maintenance that apply to manufacturing equipment that can be used to develop standards in 
transportation. There are similar ideas in each, both have actuators and mechanical components 
but the operational metrics and the failure scenarios are often different. An aircraft engine will 
have a different set of operational metrics than a machine tool since an engine failure is a more 
serious incident than a scrapped part—in most cases. 
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ANNEX A SECTION 1, SUBSECTION 1 MANUFACTURING STANDARDS ECOSYSTEM 

Manufacturing has a numerous standards that relate to analytical methodologies, and four areas 
where standards apply: geometric design, system engineering and simulation, operational 
efficiency, measurement and verification, and equipment maintenance. Geometric design has 
been primarily represented by the STEP (ISO 10303) standards and the current revision, 
AP242ed2, takes the basic core geometric representation given in AP203 and adds product 
information and geometric tolerance. 

Figure 8-2 is an illustrative example of some of the numerous standards in the manufacturing 
space.  

Geometric design also needs to be coupled with engineering models to express the requirements 
of the product and simulate its function. That is where standards like SysML are applied to 
provide the foundation for communicating the functional information necessary to develop 
digital surrogates of the final product. The question may be raised about how this applies to the 
industrial internet that is primarily concerned with data from devices. The reason these models, 
often first-principles based, are necessary is they provide the initial intent from which the 
empirical data can be compared and the models refined. 

Figure 8-3 illustrates geometric design related standards within the context of manufacturing 
IIoT. 

Figure 8-2 Manufacturing has a numerous standards that relate to analytical methodologies 
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The standards ecosystem extends through the production of the product and standards that 
provide measurements of quality such as the Risk Priority Number (RPN) that evaluates the 
importance, stability, and the detectability of defects in a manufacturing process to standards 
that provide reports of the products lifecycle such as STEP AP239. There are multiple standards 
that also constrain manufacturing processes and material like ASME and ASTM that provide the 
information required to validate the correctness of a part and a product. 

Analytics require the expression of the semantic intent of the product as well as the as produced 
and as built instances of the design. The models need to be communicated between systems 
using standards and open technologies.  

The existing cross-domain and domain-specific standards as described above will help the 
semantic understanding for analytics, new standards with common abstract modeling of parts, 
products, equipment and processes may need to be developed to enable better communication 
of and greater degree of semantic understanding of them and their interactions. 

 
  

Figure 8-3 Geometric design related standards 
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Annex C ACRONYMS 

IETF Internet Engineering Task Force 
IIC Industrial Internet Consortium 
IIoT Industrial Internet of Things 
IIRA Industrial Internet of Things Reference Architecture 
 
  



Analytics Framework Annex D: Glossary 

IIC:PUB:T3:V1.00:PB:20171023 - 47 - 

Annex D GLOSSARY 

Industrial Internet Consortium (IIC) 
an open membership, international not-for-profit consortium that is setting 
the architectural framework and direction for the Industrial Internet. 
Founded by AT&T, Cisco, GE, IBM and Intel in March 2014, the consortium’s 
mission is to coordinate vast ecosystem initiatives to connect and integrate 
objects with people, processes and data using common architectures, 
interoperability and open standards. 

Industrial Internet of Things (IIoT) 
describes systems that connects and integrates industrial control systems 
with enterprise systems, business processes, and analytics. 
Note 1: Industrial control systems contain sensors and actuators. 
Note 2: Typically, these are large and complicated system. 

Internet Engineering Task Force (IETF) 
The Internet Engineering Task Force (IETF) develops and promotes voluntary 
Internet standards, in particular the standards that comprise the Internet 
protocol suite (TCP/IP). It is an open standards organization, with no formal 
membership or membership requirements. 

  

https://en.wikipedia.org/wiki/Internet_standard
https://en.wikipedia.org/wiki/Internet_protocol_suite
https://en.wikipedia.org/wiki/Internet_protocol_suite
https://en.wikipedia.org/wiki/Standards_organization
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USE OF INFORMATION—TERMS, CONDITIONS AND NOTICES 

This is an Industrial Internet Consortium document (the “Document”) and is to be used in 
accordance with the terms, conditions and notices set forth below. This Document does not 
represent a commitment by any person to implement any portion or recommendation contained 
in it in any products or services. The information contained in this Document is subject to change 
without notice. 

LICENSES 

The companies listed above have granted to the Object Management Group, Inc. (OMG) and its 
Industrial Internet Consortium (the “IIC”) a nonexclusive, irrevocable, royalty-free, paid up, 
worldwide license to copy and distribute this Document and to modify this Document and 
distribute copies of the modified version. Each of the copyright holders listed above has agreed 
that no person shall be deemed to have infringed the copyright in the included material of any 
such copyright holder by reason of having copied, distributed or used such material set forth 
herein. 

Subject to all of the terms and conditions below, the owners of the copyright in this Document 
hereby grant you a fully-paid up, non-exclusive, nontransferable, perpetual, worldwide license 
(without the right to sublicense) to use, copy and distribute this Document (the “Permission”), 
provided that: (1) both the copyright notice above, and a copy of this Permission paragraph, 
appear on any copies of this Document made by you or by those acting on your behalf; (2) the 
use of the Document is only for informational purposes in connection with the IIC’s mission, 
purposes and activities; (3) the Document is not copied or posted on any network computer, 
publicly performed or displayed, or broadcast in any media and will not be otherwise resold or 
transferred for commercial purposes; and (4) no modifications are made to this Document. 

This limited Permission is effective until terminated. You may terminate it at any time by ceasing 
all use of the Document and destroying all copies. The IIC may terminate it at any time by notice 
to you. This Permission automatically terminates without notice if you breach any of these terms 
or conditions. Upon termination, or at any time upon the IIC’s express written request, you will 
destroy immediately any copies of this Document in your possession or control. 

The Licenses and Permission relate only to copyrights and do not convey rights in any patents 
(see below). 

PATENTS 

Compliance with or adoption of any advice, guidance or recommendations contained in any IIC 
reports or other IIC documents may require use of an invention covered by patent rights. OMG 
and the IIC are not responsible for identifying patents for which a license may be required to 
comply with any IIC document or advice, or for conducting legal inquiries into the legal validity 
or scope of those patents that are brought to its attention. IIC documents are informational and 
advisory only. Readers of this Document are responsible for protecting themselves against 
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liability for infringement of patents and other intellectual property that may arise from following 
any IIC recommendations or advice. OMG disclaims all responsibility for such infringement. 

GENERAL USE RESTRICTIONS 

This Document contains content that is protected by copyright. Any unauthorized use of this 
Document may violate copyright laws, trademark laws and communications regulations and 
statutes. Except as provided by the above Licenses, no part of this work covered by copyright 
may be reproduced or used in any form or by any means—graphic, electronic, or mechanical, 
including photocopying, recording, taping or information storage and retrieval systems—without 
permission of the copyright owner(s). 

DISCLAIMER OF WARRANTY 

WHILE THIS DOCUMENT IS BELIEVED TO BE ACCURATE, IT IS PROVIDED “AS IS” AND MAY 
CONTAIN ERRORS OR MISPRINTS. THE OBJECT MANAGEMENT GROUP, INC. (INCLUDING THE IIC) 
AND THE COPYRIGHT OWNERS LISTED ABOVE MAKE NO WARRANTY, REPRESENTATION OR 
CONDITIONS OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS DOCUMENT, 
INCLUDING BUT NOT LIMITED TO ANY WARRANTY OF TITLE OR OWNERSHIP, ANY IMPLIED 
WARRANTY OR MERCHANTABILITY OR ANY WARRANTY OF FITNESS FOR A PARTICULAR PURPOSE 
OR USE. IN NO EVENT SHALL THE OBJECT MANAGEMENT GROUP, INC. (INCLUDING THE IIC) OR 
ANY OF THE COPYRIGHT OWNERS BE LIABLE FOR ERRORS CONTAINED HEREIN OR FOR DIRECT, 
INDIRECT, INCIDENTAL, SPECIAL, CONSEQUENTIAL, RELIANCE OR COVER DAMAGES, INCLUDING 
LOSS OF PROFITS, REVENUE, DATA OR USE, INCURRED BY ANY USER OR ANY THIRD PARTY IN 
CONNECTION WITH THE FURNISHING, PERFORMANCE, REPRODUCTION, DISTRIBUTION OR USE 
OF THIS MATERIAL, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. 

The entire risk as to the quality and performance of any software or technology developed using 
this Document is borne by you. This disclaimer of warranty constitutes an essential part of the 
Licenses granted to you to use this Document. 

LIMITED RIGHTS NOTICE 

This Document contains technical data that was developed at private expense and (i) embodies 
trade secrets, or (ii) is confidential and either commercial or financial. This document was not 
produced in the performance of a government contract and is not in the public domain. The use, 
duplication or disclosure of this Document by the U.S. Government is subject to the restrictions 
set forth in 48 C.F.R. 52.227-14–Rights in Data “Limited Rights Notice (Dec. 2007) (a) and (b),” or 
as specified in 48 C.F.R. 12.211 of the Federal Acquisition Regulations and its successors, as 
applicable. This data may only be reproduced and used by the U.S. Government with the express 
limitation that it will not, without written permission of the copyright owners, be used for 
purposes of manufacture nor disclosed outside the Government. The copyright owners are as 
indicated above and may be contacted through the Object Management Group, Inc., 109 
Highland Avenue, Needham, MA 02494, U.S.A. 
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TRADEMARKS 

The trademarks, service marks, trade names and other special designations that appear on and 
within the Document are the marks of OMG, the copyright holders listed above and possibly 
other manufacturers and suppliers identified in the Document and may not be used or 
reproduced without the express written permission of the owner, except as necessary to 
reproduce, distribute and refer to this Document as authorized herein. 


