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AinguralloT

Our objective is to use data and domain
knowledge to provide added value
bringing competitiveness to the industry,
at product and process level, through
machine learning-based failure diagnosis,
prognosis and energy efficiency
actionable insights.
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lloT Use Case Example
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Using lloT to Increase machine availability

Total Machines in China
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* Chinese automotive
OEMs

o More than 300 machines
working

* None of the above are
performing the same
operation

* However, all of them are
looking to:
o Mminimize downtime
o Increase availability



Using lloT to Increase machine availability
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* Product

©)

Powertrain crankshaft

 Cycle time

©)

60 seconds

 Average production

©)

1.000 parts/day

* Required availability

©)

95%

* Problem

©)

©)

©)

Large temperature gradients within
production facility

Reduced availability when machine
stopped by low temperature

Loss of precision
Quality issues risk

Machine stop could be up to 2
hours per day

That is, more than 80 crankshafts
not produced.

A stop machine can costs around
$50k per hour



Using lloT to Increase machine availability

« Sampling rate
o Probe measurement: 240s
o Temperature: 80s

* Number of variables
o 15

* Main variables

o Xand Y tooltip position,

o 9 machine structure and fluids
temperatures

o Environment temperature.
« Sampling time

o 12 months
* Total dataset size

o 2.4 GB
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Using lloT to Increase machine availability

« Machine Learning application

O

O

Feature subset selection

= Select the most relevant variables (sensors) that has influence on the tooltip
position

Multi-output regression

=  Find how variables influence on the tooltip position

= Predict the tooltip position

=  Provide feedback to the compensation control at the CNC

* Results:

O

O

One part of the machine basement is the responsible for tooltip deviation
= New machine materials are studied for further design improvement.

Compensation of the CNC system is improved by this model

e Outcome:

O

O
©)

To provide better knowledge from the machine to the designers
= Direct impact the machine design in terms of materials used and their specification

Dynamical compensation of machine-tool behavior during production

An increase crankshaft quality in terms of tolerance variation during
thermal changes and machine availability.

An important increase in availability
= Avoiding machine-tool stop until stable environmental temperature is reached.

Saved downtime costs up to $100k per day.
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[IC Testbed:

SmartFactory Machine Learning
for Predictive Maintenance




SFML Testbed

http://lwww.iiconsortium.org/smart-factory-machine-learning.htm
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http://www.iiconsortium.org/smart-factory-machine-learning.htm
http://cts.businesswire.com/ct/CT?id=smartlink&url=http://www.iiconsortium.org/index.htm&esheet=51685074&newsitemid=20170918006221&lan=en-US&anchor=The+Industrial+Internet+Consortium&index=1&md5=ee0e65b02ce135f45c99f6a3631b6e6c

SFML Testbed

» Sponsors:
o Aingura lloT
o Xilinx

* Supporting:
o Aicas,

o Bosch Software
Innovations,

GlobalSign,

Infineon Technologies,
IVeia,

Microsoft,

PFP Cybersecurity,

RTI,

Thingswise,

Titanium Industrial Security,
and

XMPro

 Phase 1: Lab Development and Test

Utilizes simulated data and degradation/fault conditions for ML exploration
* Phase 2: Pilot Factory

Initial Deployment in limited production facility — Etxe-Tar
«  Phase 3: Production Facility

Deployment of ML and real-time analytics in Automotive OEM facility

O O O O O O O O

O
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Preliminary Public Results




Industrial Applications of Machine Leaming

* Book details:
o Title: “Industrial Applications of Machine Learning”

o Series: Chapman & Hall/CRC Data Mining and Knowledge
Discovery Series

o ISBN 9780815356226 - CAT# K346412

o CRC URL: https://goo.gl/psf3Xi
o Table of Contents

1.

The Fourth Industrial Revolution
Machine Learning
Applications of Machine Learning in Industrial Sectors

2.
3.
4

5.

Component-Level Case Study: Remaining Useful Life of
Bearings

Machine-Level Case Study: Fingerprint of Industrial Motors

6.

/.

Production-Level Case Study: Automated Visual Inspection of a
Laser Process

Distribution-Level Case Study: Forecasting of Air Freight Delays
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https://goo.gl/psf3Xi

Industrial Applications of Machine Leaming

 Exploratory analysis
o Explore in the data without clear idea

o For small amounts of data, conventional
visualization methods

o For large amounts of data, dimensional reduction
* Example

o Real Application on machine tool

o Performance analysis of 3 servomotors

o 13 variables per servo

o 5 different algorithms:
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Agglomerative hierarchical clustering
K-means clustering

Spectral clustering

Affinity propagation clustering
Gaussian mixture model clustering

15



Knowledge discoverywith real data

« Testing 3 different clustering algorithms to find new
knowledge
o K-Means, agglomerative hierarchical, Gaussian mixture model.

o J.Diaz-Rozo, C. Bielza, and P. Larrafiaga, “Machine learning-
based CPS for clustering high throughput machining cycle
conditions,” Procedia Manufacturing, vol. 10, pp. 997-1008, 2017.

Machine-tool for powertrain manufacturing
o  Cycle time 60 seconds
o Utilization over 95%
Spindle head - Key critical component
o Power 10 kW
o  Primary function: Material removal
Failure cost :
o  Costs USD 30,000 up to 250,000
o Repair time: 5 working shifts
o Impact: 200 direct jobs
Understand Cluster Evolution:

o  Cluster shapes (how the identified machining characteristics
change over time)

o Number of clusters (identify new machining characteristics).
 Gaussian mixtures
o Provides new information about different states of the spindle
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Gaussian-based Dynamic Probabilistic Clustering

* GDPC is an algorithm developed by

Aingura lloT to measure component

degradation

o J.Diaz-Rozo, C. Bielza, and P. Larrafiaga, “Clustering
of Data Streams with Dynamic Gaussian Mixture
Models. An loT Application in Industrial Processes,”
|EEE Internet of Things Journal, 2018.

o https://doi.org/10.1109/J10T.2018.2840129
- Data stream analytics

o Able to perform analytics in Real-Time
o No need of data storage
o Machine Learning at the edge

 Update the learnt model once the

component degrades
o Concept drift
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https://doi.org/10.1109/JIOT.2018.2840129

Edge Computing Node

* Integrated modules for:
o Analog sensors

o High speed energy
measurement

o Vibration
o Ethernet/switching
o Storage

. Powered by Xilinx MPSoC
Ultrascale+
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Edge computing deployment

__________________

FIG. 7B
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* There could be a need for
computing power at the
edge

o Traditional computing devices

not suitable for industrial
environments

o Large amounts of data to be
pre-processed depending on
application

o Complex algorithms to solve
specific questions

o Extremely fast computing
needs to provide actionable
Insights in Real-Time

* Steps for industrial
computing at the edge
US Patent 10031500B1

“Device and system including
multiple devices for supervision
and control of machines in

industrial installation”
19
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