

Communications, protocols and information modeling: The fundamentals of IoT, IIOT, M2M, industrie 4.0

Thomas Burke

OPC Founder & Visionary Thomas.Burke@opcfoundation.org

The newest Nespresso machine is also the smartest, thanks to smartphone compatibility.

Smartphone connectivity and alerts for water, capsule stock and descaling keep you in-theknow on your machine's status.

The Connected World of Data (IOT)

The racket, has gyroscopes, accelerometers and a piezoelectric sensor in the handle. These sensors pick up a variety of data, including where the ball hits the strings, how much power goes into a shot and how much spin a player puts on a ball.

The value of IIoT

Honeywell

Often expressed in mind-boggling

Often expressed in mind-boggling numbers

© 2015 Honeywell International All Rights Reserved

OPC Foundation

Broad Vision

Secure, reliable, multi-vendor, multi-platform, multi-domain information interoperability from sensor to enterprise

- International Scope
 - Non profit organization (founded 1995)
 - Companies from Automation & IT
 - Standard: OPC UA is IEC62541
- Deliverables
 - Open Specification
 - Tools: certification tools
 - Compliance Labs
- NOTE: Professional OPC UA Toolkits are the ecosystem

OPC Members

OPC Board

- Microsoft, SAP, Siemens, Beckhoff, Honeywell, Yokogawa, and others
- New members coming soon

The Industrial Interoperability Standard

OPC UA: The industrial framework enabling secured, standardized data and interfaces

Interoperability

Independent: Vendor, Platform, Market and OS

Discoverable Service Oriented Architecture (SOA) independent of the transport method

Run by a Non-Profit (OPC Foundation)

60M install base and exponential growth **Scalability:** From Sensor to Cloud

Data Modelling

Rich data modeling (preserves data context)

Vendors can extend the data model of each product (Companion Specification)

Maps domain specific protocols, e.g. BACNet | MTConnect | Weihenstephan...

Maps domain specific information e.g. Robotics, Machine Vision, ...

Security

Secure by Design Based on open security standards Authentication | Encryption Evolves with Security Industry standards Scalable security

OPC UA in the world

Upcoming Global OPC UA Initiatives

- Industrial Internet: US concept (GE) but Industrial Internet Consortium global and collaborates with Industry 4.0 Platform.
- UK: Industry 4.0 and 4IR initiative. Post-Brexit unknown.
- China: Industry 4.0 the framework of "Made in China 2025"
- Japan: several initiatives, collaboration industry 4.0 Platform.

EU / Western Europe

Austria: Industrie 4.0 Österreich Belgium: Factories of the future Czech Republic: Průmysl 4.0 Denmark: MADE France: L'Industrie du Futur Germany: Industrie 4.0 Hungary: IPAR4.0

"Bom" in Germany Netherlands: Smart Industry

- Portugal: Indústria 4.0 Spain: Industria Con<u>ect</u>ada 4.0
 - Sweden: Smart Industry / Produktion 2030
- K: Industry 4.0 / 4IR
 - EU: aligning national plans

China Made in China 2025

Industrial Internet Consortium OPC UA Testbeds

F

The Industrial Internet of Things Volume G5: Connectivity Framework **Example testbeds with integrated OPC UA:**

1. SMART MANUFACTURING CONNECTIVITY FOR BROWN-FIELD SENSORS 2. TIME SENSITIVE NETWORKING (TSN) TESTBED

3. SMART FACTORY WEB TESTBED

https://www.iiconsortium.org/pdf/IIC_PUB_G5_V1.0_PB_20170228.pdf

Industrie 4.0 Requires OPC UA

EVERY I4.0 IMPLEMENTATION LEVEL OFFICIALLY REQUIRES OPC UA

ZVEI:

Robotics Uses OPC UA to Implement Industrie 4.0

OPC Architecture: In Depth

Specific Models

Use case specific models Industry specific models Device / machine specific models

Companion Information Models

PLCopen, ADI, FDI, FDT, BACnet, MDIS, ISA95, AutomationML, MTConnect, AutoID, VDW, EUROMAP, Robotics, Vision Systems, IEC 61850/61400, Sercos, Powerlink, PROFInet, ...

Developed with partner organizations

OPC Foundation strategy:

- Rules for OPC UA CS developed together with partners
- Predefined process for joint OPC UA CS
- Templates to ensure standardized format and potential certifications
- Compliance
- Intellectual Property
- Working Processes

Collaborations

The OPC Foundation closely cooperates with organizations and associations from various branches. Specific information models of other standardization organizations are mapped onto OPC-UA and thus become portable.

Markets

https://opcfoundation.org/markets-collaboration/

- Automation

Engineering

- Building Automation
- Energy

- Measurement
- Oil & Gas
- Transportation

VDMA represents the breadth of the manufacturing industry

VDMA has more than 3200 member companies

» Agricultural Machinery

- » Air Conditioning and Ventilation
- » Air Pollution Control
- » Air-handling Technology
- » Building Control and Management
- » Cleaning Systems
- » Compressors, Compressed Air and Vacuum Technology
- » Construction Equipment and Building Material Machines
- » Drying Technology
- » Electrical Automation
- » Electronics, Micro and Nano Technologies
- » Engine Systems for Power and Heat Generation
- » Engines and Systems

VDMA | Dr. Reinhard Heister

» Fire Fighting Equipment

» Fluid Power

- » Food Processing Machinery and Packaging Machinery
- » Foundry Machinery

» Gas Welding

- » Hydro Power
- » Integrated Assembly Solutions
- » Large Industrial Plant Manufacturing
- » Lifts and Escalators
- » Machine Tools and Manufacturing Systems
 - Machine Vision
- » Materials Handling and

Intralogistics

» Measuring and Testing

Technology

» Metallurgical Plants and Rolling Mills

» Metallurgy

» Micro Technologies

» Mining

- » Plastics and Rubber Machinery
- » Power Systems
- » Power Transmission Engineering
- » Precision Tools
- » Printing and Paper Technology
- » Process Plant and Equipment
- » Productronic

» Pumps + Systems

» Refrigeration and Heat Pump Technology

» Robotics

- Robotic + Automation
- » Security Systems
- » Software and Digitization
- » Surface Treatment Technology
- Textile Care, Fabric and Leather Technology
- » Textile Machinery
- Thermal Turbines and Power Plants
- » Thermo Process Technology
- » Valves
- » Waste Treatment and Recycling
- » Wind Energy
- » Woodworking Machinery
- OPC UA CS Release (Candidate)
- OPC UA CS under development
 - Awareness existent

Seite 10 | July 7, 2018

yc

Growing into new markets

> 2016: Commercial product OPC UA in chip

Hilscher IoT-Enable Devices with Hilscher's netIC IOT; Multiprotocol, Secure Boot, OPC UA, MQTT LEARN MORE

2018: OPC UA in Microsoft IoT chip Azure Sphere: IoT chip for secured connection <u>https://www.microsoft.com/en-us/azure-sphere/</u>

 2018: Industrial kitchen equipment HKI association modelled 13 devices

Industrial mobile apps Edge/Cloud **Field devices** Pub/Sub OPC UA: **OPC** Classic: Controller to **Technology and OS** OLE for Process Control Controller Today independent Clouds Client Sub Pub OPC UA SCADA, MES, ERP, Client Firewalls **OPC UA IT Network** Client OPC OPC UA OPC UA - over TSN OPC Client Client Client Pub Sub **HMIs** - over 5G Firewalls proprietary Client Machine OPC UA PLC Sub Pub Client Control Sub Pub "SOA PLC" Pub/Sub Field Sub Pub Level

OPC Technology: History and Future

Time

Ę

OPC UA: Security analyzed by BSI

- Who: Federal Office for Information Security (German Government BSI)
- Why: Because of relevance of OPC UA for German Industry
- What: Security Evaluation of OPC-UA finalized March 2016
 - Analysis of specification
 - Analysis of Reference Implementation
- Result: Available on BSI web

Commented version on OPC web www.opcfoundation.org/security

See also video from BSI "Results Security Analysis"

OPC Youtube Channel

Communication Reliability

OPC UA recovers from communication loss

- OPC UA ensures robust and reliable communication
 - Keep-alive monitoring
 - Buffering of data and acknowledgements
 - Fast recovery in case of communication errors
 - Redundancy concepts

Vertical Integration

Microsoft commitment to OPC UA

Dedicated engineering team focused on adding OPC UA support to Microsoft products located in Munich, directly reporting to Azure IoT directors in Redmond

Download flyer here

Ţ

https://opcfoundation.org/wp-content/uploads/2016/10/Microsoft-OPC-UA-5-Clicks-To-Digital-Factory.pdf

Brownfield integration: Gateways!

F

Data Security Key Concepts

Trustworthiness: Key System Characteristics

F

Data Security

F

Trusted Information (CIA triad)

- Confidentiality
- Integrity

F

Availability

Access Control (AAA principle)

- Authentication
- Authorization
- Accounting (Auditability)

- Confidentiality
 - \rightarrow Protecting privacy of message contents

Integrity

F

 \rightarrow Not manipulating the content of a message

Availability

 \rightarrow Resiliant to DoS threats, maximizing availability

F

• Application: Authentication and Authorization

User: Authentication and **Authorization**

Auditability

F

 \rightarrow Tracking important interactions

OPC UA Defines Audit Parameters and to be included in audit records.

Communication Protocol

=

Layered conceptual communication model

- - Level 3 Apps : Internet accessibility and Security (e.g. HTTP & XML, E & S)
 - Level 2 Apps : High speed and Security (e.g. UA TCP & BIN, S)
 - Level 1 Apps : High speed and Small-footprint (e.g. UA TCP & BIN)

Communication Layer Security

► Availability → Minimal message processing before authentication

Examples:

- Restricting message size
- No security related error codes returned

Communication & Application Layer Security

- Authentication of applications
 - Application instance certificates
 - Certificate Authority (CA)

- Authentication of users
 - Username / password, WS-Security Token or X.509 certificates,
 - Fits into existing infrastructures like Active Directory
- Authorization (Server Specific)
 - Fine-granular information in address space (Read, Write, Browse)
 - Writing of meta data, calling methods
- Auditability
 - Generating audit events for security related operations

Thank you!

Thomas Burke President OPC Foundation <u>Thomas.Burke@opcfoundation.org</u>

