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1 INTRODUCTION 

The cost to design, build, verify, and certify high assurance systems will rapidly exceed time and 

budget targets.  This can add thousands or tens of thousands of hours of additional effort; and, 

for the highest levels of certification, exceed $100 per line of code. (CITE)  These costs can be 

mitigated by building upon a high assurance software stack foundation that is already 

verified/certified.  As a result, the software certification needed will be limited to the application 

code that you develop.   

With support from DARPA, Real-Time Innovations (RTI) has been working in the area of formally-

verified microkernels and software certification frameworks for the last six years.  Our focus has 

been on exploring software architectures and technologies that will accelerate time to market 

for high assurance systems.  Our software stack is built upon open-source technology based upon 

the formally-proven seL4 microkernel, and a data-centric communications technology using 

Object Management Group’s Data Distribution Service (OMG DDS).  The working 

implementations we will discuss are using Hensoldt Cyber’s TRENTOS (a commercial operating 

system implementation on top of seL4), and RTI Connext Cert (a certifiable commercial software 

framework that is OMG DDS-compliant). 

We walk through multiple software architectures that utilize this software stack, and present 

performance results from our reference implementations. 

The purpose of this document is to present the details, use cases, and discusses performance of 

a high assurance software stack to expose readers to issues and challenges before starting their 

own efforts.  We share a cost-effective approach to accelerate the design and implementation of 

their systems by building upon a high assurance stack (seL4 and OMG DDS). This paper provides 

the rationale, explains a software stack and outlines multiple software architectures that use it.  

This should be useful to IOT architects, developers, integrators, and safety/security assurance 

personnel. 

2 MOTIVATION 

The process of building trustworthy and high assurance systems is complex, costly, and requires 

significant expertise.  The end goal is to create a complete software-hardware solution whose 

components, both individually and collectively, meet your customers’ required levels of 

assurance for safety and security.  This will vary depending upon the standards that are required. 

For example, RTCA DO-178C1 for flight safety airworthiness, and ISO 26262 for autonomous 

vehicles.  Within each of these, there are multiple levels of certification corresponding to the 

 

1 See standards, certification companies, and software references at the end of the paper. 



Accelerating Time-to-Market 

July 2022 4 

level of criticality (the role) that the component has.  For example, within DO-178C there are five 

levels: 

• Level A: Catastrophic: prevents continued safe flight or landing, many fatal injuries 

• Level B: Hazardous/Severe: potentially fatal injuries to a small number of occupants 

• Level C: Major: impairs crew efficiency, discomfort, or possible injuries to occupants 

• Level D: Minor: reduced aircraft safety margins, but well within crew capabilities 

• Level E: No Effect: does not affect the safety of the aircraft at all 

Given that the cost of software certification alone can be exceedingly expensive, depending upon 

the certification level required, there is a strong motivation to find and use as many pre-

certifiable components as you can in order to significantly reduce the program risk and cost and 

time to  delivery. 

While you must develop your application code, you can (and should) avoid developing as much 

of the code that it sits upon. This includes the components you will need for on- and offboard 

communications, along with the operating system.  It is important to highlight that your choices 

early on can have a significant impact on your overall certification costs. For example, choosing 

the right programming language with an ecosystem of certified tools (such as Ada), may be worth 

the investment. We suggest working with certification experts as early in the software 

development process as possible. 

In this article, we propose a verified stack to accelerate safety/security accreditation for 

consideration. It involves the combination of seL4 and the Object Management Group Data 

Distribution Service (DDS). seL4 is a mathematically formally verified microkernel2 that has been 

long-funded and supported by DARPA; and DDS is an open standards-based communications 

middleware.   

The use of seL4 and DDS can significantly reduce the time a customer needs to invest to develop 

and commercialize their system. That is, they will only need to implement their own application 

functionality and certify their own code - not the rest of the stack. This will accelerate time to 

market significantly. 

Leveraging both IRAD and DARPA funding, we have created a high assurance software stack that 

will significantly reduce time to market by: 

1) Providing a formally verified software stack that is ready for safety certification as a 

starting point 

2) minimizing the application code size, reducing what users need to develop, certify, and 

maintain 

 
2 https://cseweb.ucsd.edu/~dstefan/cse227-spring20/papers/sel4.pdf 

mailto:https://cseweb.ucsd.edu/~dstefan/cse227-spring20/papers/sel4.pdf
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Utilizing the OMG DDS open standard enables the ability to rapidly assemble loosely coupled 

(distributed) software components into a working system 

As a part of this project, we have built several reference architectures that demonstrate the utility 

of this approach.  

3 BUILDING TRUSTWORTHY SYSTEMS 

General purpose computing, operating systems, inherent language features (e.g., C memory 

allocation), and software quality issues have led to a lack of inherent security and resiliency in 

systems throughout industry.  This has resulted in many security breaches that have had dire 

consequences to national security. It is necessary to design assured systems based on 

appropriate techniques and tools by applying sound security and engineering principles.  

Generally speaking, building an assured system entails a thorough understanding of the problem 

domain, deep analysis of domain-specific workflows and requirements, careful architectural 

considerations and design trade-offs, vetted development, proper configuration and managed 

deployment of the final product.  This level of care will also be needed throughout the product 

lifecycle.  Specifically related to system architecture, leveraging hardware and software 

techniques and tools for enhanced security boils down to applying sound security principles to 

suitable targets such as memory access (e.g., the Principles of Open Design, Least Privilege, 

Separation of Privilege, and Complete Mediation). Other research and development efforts may 

adopt different applications of such principles to their particular environments and design goals.  

3.1 CHALLENGES 

One common theme in developing a trustworthy system architecture is related to secure 

communications, which include communications of the system with external parties and those 

among internal entities of the system itself. It is relatively straightforward for a developer to 

adopt the Complete Mediation principle and check integrity and confidentiality using some 

cryptographic methods, especially for external communications. For internal communications, 

some kind of broadcast via a bus interface (e.g., MIL-STD-1553) is usually adopted due to reasons 

such as legacy support and easy integration. These practices are not sufficient to provide the 

needed security, resiliency, assurance or even efficiency.  

First, while the cryptographic algorithms are standardized, correct application of cryptography, 

particularly key management, remains a major challenge in implementation. Example 

vulnerabilities related to inappropriate use of cryptography abound.  Moreover, broadcast-based 

bus interfaces are well known to be vulnerable to myriad attacks, since by nature the bus is an 

“open-party-line” that each module attached to the bus can listen to, receive and send messages. 

A well vetted and standardized way to apply cryptography is needed, and security should be 

applied to bus-based communications.  
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Second, in current design and development practices, even when cryptography is correctly 

applied, the message-based communication model still poses significant technical challenges in 

that each application/module will have to understand data, information and context separately, 

usually after receiving a sequence of messages.  All of the knowledge of what is flowing over the 

network is opaque in message-based communications.  So, while this model makes sense in the 

traditional context of protocol development, it does not suit the needs of building assured 

systems where mission and application contexts are ubiquitous. In other words, it is not the raw 

“message” that matters; it is the data and information in context that ultimately matter. That is, 

we need to know what data is moving over the network.  Therefore, a data-centric approach (as 

opposed to message-centric) is more desirable because it provides critically needed network 

packet transparency.  This approach needs to be real-time, secure, and efficient.  

Building high assurance systems will require deep expertise, a lot of patience, and substantial 

funding.  Multiply that by a factor of three if your system needs to be certified to some standard:  

you will need in-house expertise in software certification along with an outside certification 

partner; and, the path to market will be on the order of years.  In our experience, you should 

expect certification costs alone to range from $5-$300 per single line of code (SLOC) depending 

upon the level of certification needed. 

3.2 SOLUTIONS 

For the reasons just enumerated, it is simply too 

costly in terms of funding and time to build a high 

assurance system from top to bottom. On the 

contrary, the goal should be to develop as little code 

as possible. The more proven/certifiable code that 

one can acquire or license, the less one will need to 

design, develop, maintain, and certify. This will 

expedite development efforts and significantly 

lower costs. A high assurance software stack 

provides this (as depicted in the Figure 3-1. High 

assurance stack.).   

In this paper we do not review, compare, or debate 

alternative stacks. Rather, we delve into a high 

assurance software stack that was developed in a 

DARPA funded effort over the last five years by RTI Research. We have designed and 

implemented architectures for secure medical systems and defense applications. It is suitable for 

both embedded systems with tight resources and more capable hardware. 

The role of this stack is to provide a proven foundation. It is composed of a real-time operating 

system (RTOS) that has been verified or certified (a safety RTOS), and a distributed 

communications middleware.  In our stack, for the Safety RTOS we chose the open source seL4 

Figure 3-1. High assurance stack. 
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separation kernel (sel4.systems). It is a mathematically provably correct microkernel that will 

provide both time and space separation between running processes.  It guarantees that there 

will be no unintended data leakage between processes, and that one process cannot impact the 

operation of another.  This provides greater system resilience and security (these are also 

attributes of a multiple independent levels of security (MILS) solution3). On top of this, we use a 

middleware framework based upon the Object Management Group Data Distribution Service 

standard (OMG DDS). The subsections below describe the motivations for each. 

3.2.1 A MICROKERNEL FOUNDATION  

To understand the need for a secure microkernel, like seL4, it is helpful to start with a closer look 

at kernel design principles in general. As shown in Figure 3-2, there are two main kernel design 

approaches – the monolithic kernel and the microkernel. In the former one, all code required for 

providing typical OS services is directly implemented in the kernel itself. The kernel executes in 

the privileged mode of the hardware, meaning that all code is granted unrestricted access and 

control of all system resources. This type of implementation might be beneficial to the overall 

system performance, but it can lead to dangerous situations if any of the kernel components 

feature some type of malfunction – a state that could be exploited by an attacker. A prominent 

example is provided by the Linux kernel, which – containing more than 20 million lines of code – 

can be expected to contain a certain number of bugs providing potential attack channels. 

In contrast, the microkernel design copes with this drawback by drastically reducing the trusted 

computing base (TCB), meaning the subset of code in the overall system that must be trusted to 

operate correctly. A microkernel follows the design principle of having the kernel contain only 

the most fundamental mechanisms (e.g. IPC, scheduling). All remaining OS functionality must be 

transferred to the unprivileged user mode, thereby running encapsulated within isolated 

sandboxes. This approach protects the kernel processes from any interference from the outside, 

only allowing communication that is explicitly wanted. For a well-designed microkernel like seL4 

this means that code base can be reduced to the order of ten thousand lines of code. This 

drastically shrinks the attack surface. The general performance problem of typical microkernels, 

induced by the significant communication overhead due to the additional kernel entries/exits 

and context switches, was solved back in the mid-‘90s by Jochen Liedtke4. He accelerated the 

underlying IPC concept and designed the first L4 microkernel. 

 
3 https://www.iiconsortium.org/pdf/MILS_Architectural_Approach_Whitepaper.pdf 
4 http://www.cs.fsu.edu/~awang/courses/cop5611_s2004/microkernel.pdf 

 

https://www.iiconsortium.org/pdf/MILS_Architectural_Approach_Whitepaper.pdf
http://www.cs.fsu.edu/~awang/courses/cop5611_s2004/microkernel.pdf
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Figure 3-2. Kernel design approaches: Monolithic and microkernel (taken from seL4 white paper5). 

3.2.1.1 THE SEL4 MICROKERNEL  

seL4 joined the family of L4 microkernels in 2009, when it was first released to the public. Since 

2014, it was made available as open-source software; and, as of 2020 it is officially maintained 

by the seL4 Foundation. In contrast to previous L4 designs, seL4 was implemented completely 

from scratch. The developers therefore were able to free themselves from this legacy (e.g. API 

and code), and yet benefit from all the positive and negative experiences of almost 20 years of 

L4 based kernel design. One of seL4’s outstanding features is provided by its inherent and unique 

focus on the development of highly secure systems without compromising performance. 

Therefore, two main security design concepts were introduced: the utilization of capabilities, and 

the application of formal verification techniques. Within the context of seL4, capabilities 

represent a form of access token, which allows for a very fine-grained control over system 

resources. This supports the kernel’s isolation properties. Additionally, with the help of formal 

verification techniques, the absence of bugs inside the kernel implementation has been 

mathematically proven with respect to its specification. This is an achievement that still leaves 

the seL4 kernel as the world’s most advanced and most highly assured OS kernel. 

3.2.1.2 CAMKES – AN ABSTRACTION LAYER ON TOP OF SEL4  

Nevertheless, the actual implementation of services directly on top of the seL4 microkernel API 

itself can be quite a challenging task. To provide easier access to the underlying concepts, various 

helper libraries were developed, trying to hide the low-level kernel mechanisms of seL4. This 

makes the microkernel’s security features and its mechanisms (e.g. IPC, memory management) 

easier to use for non-experts. The CAmkES (Component Architecture for microkernel-based 

Embedded Systems) framework extends this approach by providing “a software development 

and runtime framework for quickly and reliably building microkernel-based multi-OS  systems.”6 

As a result, a layered component architecture for the separation of concerns was established, 

allowing for model-driven development.  This enables the ability to auto-generate CAmkES 

configuration files from system models, which will reduce configuration complexity.

 
5 The seL4 Microkernel, https://cdn.hackaday.io/files/1713937332878112/seL4-whitepaper.pdf 
6 Cited from: https://docs.sel4.systems/projects/camkes 

https://cdn.hackaday.io/files/1713937332878112/seL4-whitepaper.pdf
https://docs.sel4.systems/projects/camkes
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CAmkES consists of a clear set of building blocks. Its primary purpose is to support the 

development of statically configured embedded systems. Therefore, CAmkES provides a 

dedicated language used to describe the components and their respective interfaces, as well as 

the composition of complete component-based systems. It also offers tooling support for 

processing these descriptions and automatically translating them into C code. In addition, 

respective proofs are generated. The resulting glue code is combined with programmer-provided 

component code, leading to the creation of a complete and bootable system image. The overall 

setup is then neatly integrated into the existing seL4 environment and build system. 

 
Figure 3-3. A Typical CAmkES system architecture (taken from seL4 white paper). 

As can be seen in Figure 3-3, a typical CAmkES system consists of components (e.g. Component 

A) and their respective connections (e.g. RPC). When grouping all components and connections 

together, a composition is formed. If combined with a respective configuration section, a 

complete system (also called assembly) can be provided. The components hereby reflect seL4’s 

isolation feature and comprise (at least) one thread for execution, an associated address space 

and required storage for associated capabilities. To enable interaction between components, 

CAmkES provides three basic connection types. Internally, they are mapped to a respective seL4 

communication mechanism: 

1. remote procedure calls (RPCs): synchronous communication, reusing seL4’s IPC 

mechanism 

2. events: asynchronous communication, reusing seL4’s notification mechanism 

3. dataports: bidirectional communication, suitable for exchanging large data between 

components via shared memory (size is constrained by available physical memory). 

CAmkES and seL4 represent the latest technology advancements in secure microkernels and 

together comprise  the “safety RTOS” shown in Figure 3-1. 

Although seL4 and CAmkES provide rudimentary communications paths between processes  that 

can be used for both on and offboard communications, all application-level code required to 
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enable this is left to the system developer. Consequently, this user space code will need to go 

through certification. However, significant expense in both time and money can be avoided by 

utilizing an existing certifiable COTS software communications framework, discussed next. 

3.2.2 A SECURE COMMUNICATIONS SOFTWARE FRAMEWORK 

The purpose of seL4 is to provide a reliable, safe, and secure foundation for applications that 

require it.  This includes, for example: military systems, medical devices, robotics, autonomous 

vehicles, and energy systems. Without exception, these high assurance applications require a 

reliable and robust distributed communications capability, which is not provided by seL4.  

 

Figure 3-4.  Microkernels provide process separation. 

The seL4 kernel currently has a limited infrastructure for developing complex, high-assurance 

distributed systems.  Since the inherent design of seL4-based architectures is to partition the 

application space, as shown in concept above (Figure 3-4), applications themselves need to deal 

with developing and managing all of the communication complexity. For example, configuring 

the inter-process communications (IPC) channels is complex.  Developers will also need to define 

a protocol , serialization and deserialization, and several communications management features. 

Without standards, this will lead to numerous one-off approaches and as a result significantly 

limit component reuse within seL4. 

The Object Management Group (OMG) Data Distribution Service for Real-Time Systems (DDS) is 

a real-time, secure, loosely-coupled, publish/subscribe software connectivity framework for 

distributed systems and is ideally suited as the communications layer for high assurance systems, 

including for any safety RTOS such as seL4.  While there are other open source and commercial 

off-the-shelf communications framework technologies, those frameworks lack high assurance 

certification and at best they provide rudimentary all-or-none security. 

For DDS, seL4 creates an enriched, lower cost, smaller footprint, high assurance foundation .  For 

seL4, DDS provides an open standards-based communications protocol.  DDS will significantly 

simplify seL4 inter-component/application development, reduce associated costs, and promote 

component interoperability in the seL4 development community.  DDS is a solution that will 

standardize data distribution in a more consistent, secure and efficient manner. It provides a 

publish subscribe model that enables easier, faster and more secure distributed system 

development.  Application developers can be alleviated from the burden of creating their own 

piecemeal, perhaps proprietary, and one-off solutions for message-based communications and 
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deciphering the message sequence, so that they can focus on domain-specific components and 

rely on DDS to provide standardized, secure interaction with other (local and remote) entities in 

the system.  

DDS will significantly reduce the barriers of entry for companies and developers that decide to 

use seL4/CAmkES because it provides an abstraction layer that hides most of the complexity 

associated with developing applications on top of seL4.  DDS will significantly reduce the 

development time and the need for seL4 subject matter expertise in-house.  The next section 

delves further into what DDS is, and what features it provides. 

3.2.2.1 OMG DDS 

Most communications solutions are message centric and send their data over the network as 

encoded bits (opaque payloads) that the network cannot understand.  All of the knowledge about 

encoding and decoding the data rests with the applications themselves.  This forces every 

application to implement numerous features to support reliability, security, fault tolerance, 

scalability, and end to end interoperability.   

In contrast, DDS is data centric (data aware) – meaning that both the data and data structures 

are accessible within DDS. This enables DDS to automatically handle encoding, security, 

optimized/reliable delivery, and more.  Using DDS, developers define open data models that 

describe the structure of the data that will move between applications.   

 
Figure 3-5. The DDS middleware operates between the platform and the application. 

DDS is a software layer that abstracts the details of the operating system, network transport, and 

low-level data formats, hiding the details from the application. The same concepts and APIs are 
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provided in different programming languages allowing applications to exchange information 

across operating systems, languages, and processor architectures. Low-level details like data wire 

format, discovery, connections, reliability, protocols, transport selection, QoS, security, etc. are 

managed by the middleware. 

Instead of creating brittle, point-to-point network dependencies, DDS communicates over the 

concept of topics.  Applications simply declare what kind of data or topics (each topic has a well-

defined data structure) they are interested in, and DDS delivers it.  This eliminates the brittleness 

of requiring applications to identify specific endpoints that they need to talk to – DDS handles all 

of this, so developers can focus on application code and not on how to send data over the 

network.   

DDS Security is unique because it provides Network Layer 4 fine-grained read/write access 

control to the data.  This is in contrast to Layer 2/3 all-or-none options, including IPSec, MACSec, 

and D/TLS; these coarse-grained security alternatives expose more opportunities for 

exploitation.  Using DDS fine-grained access control guarantees that only authorized applications 

can send and receive specific types of data over dedicated logical network partitions – enabling 

highly customizable communications supporting multiple security domains.  This is software-

defined security which is controlled through signed configuration files associated with each 

application. 

DDS is loosely coupled and by using the concept of topics to communicate, it supports location-

independent processing.  This promotes system modularity and resilience, which are key 

requirements for modular open system architecture (MOSA) systems.  DDS is also platform 

agnostic.  This enables transparent interoperability between DDS applications independent of 

programming language, hardware, and operating system. 

4 A FOUNDATION FOR BUILDING TRUSTWORTHY SYSTEMS 

In the previous section we presented a description of a high assurance software stack built on 

seL4 and DDS, and we explained several of its benefits when developing critical systems. We 

made the case about why it provides a compelling foundation.  In the section, we discuss a 

reference implementation of this stack that we assembled using implementations of CAmkES 

from Hensoldt (TRENTOS®) and DDS from RTI (Connext®), respectively.  TRENTOS is the only 

production ready implementation of CAmkES.  Connext is the only DDS implementation certified 

to the highest levels for both flight safety and automotive systems.  We then present multiple 

example architectures and discuss design trade-offs.   

We start by presenting a brief description of Hensoldt’s commercial implementation of CAmkES, 

followed by RTI’s commercial implementation of DDS. 
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4.1 THE FOUNDATION PART 1: TRENTOS – THE FRAMEWORK FOR A SECURE OS 

Developed by Hensoldt Cyber, the Trusted Entity Operating System (TRENTOS®) is a novel secure 

embedded operating system which is built on top of the proven seL4 software ecosystem and 

consequently relies on trusted open-source components.  TRENTOS provides high level libraries 

to provide developers functionality, such as logging for example, encapsulating the seL4 and 

CAmkES implementation underneath.  This allows developers to fully focus on the creation of 

secure applications, and not worry about lower-level details of the underlying architecture. This 

especially alleviates the complexities of developing secure embedded systems. 

TRENTOS consists of a set of building blocks, which are provided by a typical embedded OS for 

easing the development of custom applications. The framework’s modular structure is structured 

as a set of libraries, written in the C programming language. The libraries provide all required 

core OS features (e.g. networking or storage facilities), logging capabilities, security primitives 

(e.g. cryptography) as well as additional helper functionality. The TRENTOS SDK further equips a 

developer with extensive documentation as well as all the tools required for building, testing and 

finally deploying a TRENTOS-based system to the real world. 

TRENTOS also leverages the component character of CAmkES, which demands concise interface 

definitions to interact with the OS. TRENTOS therefore provides both a dedicated C API as well 

as a set of standardized interfaces utilizing the CAmkES IDL. A typical TRENTOS component is then 

able to use the TRENTOS API (e.g. the socket API) by either providing or consuming respective 

functionality via an RPC interface. A TRENTOS component is built on top of CAmkES facilities and 

therefore basically behaves like a CAmkES component; thus, it internally has to stick to the 

CAmkES architecture definition language (ADL) and therefore also requires additional 

programmer-provided component code. The TRENTOS SDK provides a set of standard 

components, which internally adhere to selected TRENTOS libraries. They provide a kind of 

reference implementation for typical OS functionality, being accessible via the TRENTOS API. 

Examples are provided in form of platform specific device drivers (e.g., a network driver for the 

Raspberry Pi 3 B+) as well as in form of intermediate layers (e.g. a network stack component). 

4.2 THE FOUNDATION PART 2: A SOFTWARE FRAMEWORK FOR CERTIFIED SYSTEMS 

RTI’s interest in trustworthy systems was driven first by the avionics market, and then by the 

automotive market.  We have several hundred customer projects alone tied to autonomous 

vehicles.  Customers tend to start with our non-certified products for initial prototyping and 

development because they are more feature rich.  Once they have matured their designs 

sufficiently, they make the jump to our software with commercial certification evidence 

available.  You may also find value in taking a similar approach. 

RTI Connext Cert® is a RTCA DO-178C DAL A connectivity framework that implements a flight 

safety subset of the DDS specification.  It has also recently attained certification at the highest 

level for automotive systems – ISO 26262 ASIL-D.  The cost of DO-178C certification alone 
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exceeded $200 per line of code, and the process took two years.  We worked very closely with a 

certification house and used their tools to develop the high-level and low-level requirements 

(HLRs and LLRs) along with the other certification evidence that was needed.  

As addressed earlier, a DDS solution with commercial certification evidence brings numerous 

benefits beyond just shortening development time and reducing overall system costs.  It also 

offers scalability, cross-platform/language/vendor interoperability, performance, resilience, and 

modularity. RTI Connext Cert can also  run on commercial RTOSs, including DDC-I Deos, Green 

Hills Integrity-178, Lynx Software LynxOS-178, Sysgo PikeOS, and Wind River VxWorks.  RTI 

Connext Cert combined with a safety RTOS is an architectural option if your system requirements 

do not steer you toward a small footprint trusted microkernel. 

We have been continuously involved with the seL4 microkernel since 2015 when we were 

awarded the first in a series of related research contracts with DARPA.  Our overall goal has been 

to explore and develop a high assurance software stack for critical real-time systems.  We have 

been building reference architectures and implementations to highlight design alternatives and 

related performance.  This paper is part of our efforts to educate and to evangelize this 

information.   

One example of our research focused on controlling a medical device (an infusion pump) – see 

Figure 4-1.  The Infusion Pump Controller operated an Infusion Pump device via serial commands 

to an external step motor. The controller application ran on seL4, and it was deployed on a 

SabreLite iMX6 board. RTI Connext Cert listened for “infusion requests” coming from the remote 

authorized hosts, and periodically published status updates on the state of the pump to any 

application authorized to join the DDS databus. The “Root Task” is the process started by the seL4 

kernel and responsible for the initialization of all required system services, before spawning the 

controller’s process, which access RTI Connext Cert services. 
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Figure 4-1. Infusion pump controller architecture. 

When running directly on seL4, DDS requires a custom library to provide key services that seL4 

does not support (libsel4osapi).  When using CAmkES, which provides these services, this library 

is no longer necessary. 

4.3 EXAMPLE TRUSTWORTHY ARCHITECTURES 

Two generalized architectures that we have been utilizing include: 

1. Running applications directly within the trusted user space of seL4 with no operating 

system 

2. Treating seL4 as a hypervisor and running applications within virtual machines (VMs).  

A third architectural option is to combine these.  We discuss each below.  An important advantage 

of using DDS is that your application code will not be dependent upon seL4 – it can run in either 

architecture, along with numerous other OS/HW combinations. These applications can 

communicate with all other DDS applications running anywhere on your computer, network, or 

WAN.  Moreover, these applications could all be running on different OS/HW and written in 

different languages. 

4.3.1 RUNNING IN SEL4 TRUSTED USER SPACE 

The first option we present is to deploy your applications directly on seL4/CAmkES along with a 

certifiable DDS library (see Figure 4-2).  As noted earlier, this option offers the most trustworthy 

solution.  You can either utilize the CAmkES component framework or develop directly as a native 

seL4 library.  In both cases, your applications would only need to invoke the interfaces provided 
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by DDS.  The main benefit of using the CAmkES design pattern is that the developer gets verified 

interfaces “for free”.  This may lead to a much quicker verification process.   

This architecture has three key advantages:  

1. It avoids the need for a full-blown operating system, 

2. it reduces the power, memory, and CPU requirements for your system 

3. It significantly reduces the attack surface.   

It also comes with three disadvantages 

1. Your applications need to be written in C 

2. The development environment is very limited 

3. There is extra work you need to do in your application to bootstrap your code. 

While you can copy from examples, all of this code will still need to be reviewed and adapted to 

your needs. In particular, there will be quite a bit of seL4 configuration needed, allocation of 

memory, bootstrapping the standard C library, bootstrapping all the I/O, etc.  While CAmkES 

simplifies these bootstrapping steps, another approach will be needed if you want to avoid the 

first two disadvantages.  We discuss this next. 

 
Figure 4-2. Example when running your applications directly on seL4/CAmkES in trusted user space. 

4.3.2 SEL4 AS A HYPERVISOR 

The second architectural option reaps the benefits of seL4 while avoiding the development 

constraints imposed by seL4’s trusted user space.  Using this approach, seL4 can be used as a 

hypervisor (see Figure 4-3).  It provides separation guarantees to ensure that there is no 

unintentional information leakage between the VMs.  While the Linux attack surface within each 

VM still exists, the isolation provided by seL4 will ensure that a failure in one VM will not bring 

down any other running VMs. 
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From a development perspective, the main benefit of this approach is that you have the freedom 

to build your applications in virtual machines, with all of the normal development tools and 

language options. You can also run other large or legacy applications that would be far too 

expensive to port to native seL4 and to formally verify.  The use case for this design is to have 

little development done on seL4. This approach is being widely used in both defense and 

commercial industries. 

 
Figure 4-3. Using seL4 as a hypervisor. 

This option is also used as an initial step to a migration of an existing system to seL4.  The typical 

process to retrofit an existing system to run on top of seL4 is to start by separating trusted and 

untrusted components and isolating them into virtual machines and slowly migrating key 

components (trusted) into seL4 native applications.  This may culminate in a third architecture 

option: a combination of some applications running in VMs and applications running directly in 

seL4 execution space.   

 

5 CONCLUSION 

The market demand for trustworthy systems is accelerating.  However, this endeavor is not for 

the faint of heart. The expertise needed to build and certify these systems is limited.   However, 

by building upon a high assurance stack, you can significantly reduce your time to market and 

your ongoing development and certification costs.  Also, keep in mind that choices early on can 

have a significant impact on overall costs, particularly when it comes to certification.  We 

recommend talking to a certification expert early on.  We have included a list of several 

companies in the appendices. 

We have been exploring ways to make this journey shorter, with lower costs, and more 

enjoyable.  The high assurance software stack that we proposed is one option to consider.  For 

DDS, seL4 creates an enriched, low cost, small footprint, high assurance alternative for our 

customers. For seL4, DDS provides an open standards-based communications protocol. DDS will 
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significantly simplify seL4 inter-component/application development, reduce associated costs, 

and promote component interoperability in the seL4 development community. 

We have found that the certification cost and time can be significantly reduced with this 

approach, when using pre-certified sel4 and DDS components from vendors that offer certified 

stacks. Given that the cost of certification alone spans $100 to $300 (or more) per line of code, 

depending upon the certification level required, there is a strong motivation to find and use as 

many pre-certifiable components as you can in order to significantly reduce the program risk and 

cost and time to  delivery. 

 

6 GETTING STARTED 

To get started, we have provided links to a number of general resources below about seL4, 

TRENTOS and DDS. We have also provided links to the commercial technologies that we used.   

Please reach out if you are interested! 

General Resources: 

● Object Management Group Data Distribution Service (DDS).  These links provide more 

information about what DDS is, a list of DDS vendors, and the standard itself. 

o DDS Foundation, https://www.dds-foundation.org/ 

o OMG DDS Standard, https://www.omg.org/omg-dds-portal/ 

● seL4.  These links provide in-depth information about seL4, and. access to the seL4 source 

code.  There are two groups that actively support seL4:  

o seL4 Foundation, https://sel4.systems/ 

o Trusted Computing Center of Excellence (TCCOE), 

https://trustedcomputingcoe.org/ 

● Software Certification standards 

o Flight Safety  

▪ RTCA DO178C 

▪ Introduction to the Certification process, http://www.verocel.com/wp-

content/uploads/DO-178C-Presentation.pdf 

o Autonomous Vehicles 

▪ https://www.iso.org/standard/68383.html 

o Medical Devices (FDA) 

▪ https://www.fda.gov/regulatory-information/search-fda-guidance-

documents/content-premarket-submissions-management-cybersecurity-

medical-devices 

https://www.dds-foundation.org/
https://sel4.systems/
https://trustedcomputingcoe.org/
https://www.fda.gov/regulatory-information/search-fda-guidance-documents/content-premarket-submissions-management-cybersecurity-medical-devices
https://www.fda.gov/regulatory-information/search-fda-guidance-documents/content-premarket-submissions-management-cybersecurity-medical-devices
https://www.fda.gov/regulatory-information/search-fda-guidance-documents/content-premarket-submissions-management-cybersecurity-medical-devices
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● A starting point for Software Certification Companies. Others can be found via a Google 

search. 

o AFuzion,  https://afuzion.com/ 

o AVISTA/Belcan, https://www.avistainc.com/  

o Kugler Maag, https://www.kuglermaag.com/ 

o Mannarino, https://www.mss.ca/  

o Verocel, https://www.verocel.com/ 

Vendor-specific: 

● Hensoldt Cyber, a German company with focus on secure IT, develops TRENTOS  

https://hensoldt-cyber.com 

● TRENTOS, a secure embedded OS framework based on seL4. https://www.trentos.de/ 

● RTI Connext Cert, https://www.rti.com/products/connext-dds-cert 

● RTI’s Research Team, https://www.rti.com/company/research-programs 
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