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With advances in technology, cameras and AI are becoming increasingly sophisticated. It is now 
possible for data processing to happen directly on the sensor, at a computer nearby, at a server 
on premise or across the internet in a remote data center. This paper discusses the strengths and 
limitations of edge and cloud computing, and their applications in industrial machine vision. It 
aims to be a brief guide for integrating leading machine vision and edge computing practices in 
industrial settings and it showcases several practical examples.  

This whitepaper is structured into sections as follows: 

• Applications of Industrial Machine Vision broadly describes how industrial machine vision 
is being used. 

• Edge Computing in Industrial Machine Vision gives an overview of the strengths and 
limitations of applying edge computing to industrial machine vision applications. 

• Cloud Computing in Industrial Machine Vision discusses the strengths and limitations of 
using cloud computing in industrial machine vision. 

• Deciding Where the Edge Lies in Industrial Machine Vision mentions several 
configurations of implementing edge computing in industrial machine vision.  

• The Conclusion summarizes observations and conclusions made herein.  

1 APPLICATIONS OF INDUSTRIAL MACHINE VISION 

Automated inspection in manufacturing has been dramatically altered by machine vision [1]. 
Machine vision encompasses the methodology and technology involved in extracting data from 
an image or series of images to produce an output used to guide a decision-based algorithm. 
Machine vision requires method and expertise from manufacturers as well as the integration of 
many technologies, software and hardware products and integrated systems. In a simplified 
workflow, machine vision entails imaging, followed by automated image analysis to extract the 
necessary information to guide a decision (Figure 1-1). [1], [2] 

Figure 1-1 illustrates a typical machine-vision system operation along with areas that could use 
the latest AI techniques highlighted in orange. In the case of Bottlenose™, many of these tasks, 
such as feature extraction, classification, detection and depth processing have been moved onto 
the device. See side bar for a short overview of the semiconductor technology that enables these 
AI techniques.  

Machine vision can be used for quality control and it can detect several types of defects [4]. 
Examples of some quality metrics machine vision can detect are listed below [3].  

• Presence/absence: checks if the object is present in the checked spot.  

• Orientation: determines if the object is in the correct orientation. 

• Position:  checks whether the object is in the right place. 

• Color: checks for the correct colors in desired areas of the object. 

• Recognition/content analysis: checks codes including barcodes, letters and RFID on the 
object. 

• Geometric control: checks the object for the correct dimensions and geometric 
tolerances.  
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Figure 1-1: A block diagram for a typical vision system operation and 
applicable AI techniques. Obtained from [3]. 

Machine-vision algorithms typically use geometric methods with 
hand-defined feature descriptors. For example, a detector for the 
presence/absence task could be designed using contours and 
edges. Newer detection methods are based on DNNs that use 
stacked layers of convolutions and other functions that apply to 
the input image. Parameters of these functions can number in the 
millions. The DNNs are trained using large datasets and 
computers. 

 

Figure 1-2: A depiction of computer vision scanning a welded area. 
From left to right: 1) scanning of the welding part, 2) the depth image, 

3) the result of the measurement. Obtained from [5].  

The state-of-the-art 
technology within the 
Labforge Bottlenose™ 
camera is powered by 
the Toshiba Visconti-5™ 
semiconductor device.  

As Toshiba’s fifth-
generation image 
recognition processor 
chip, it has multiple ARM 
CA53 cores, multiple 
machine vision 
processing cores and an 
on-board Deep Neural 
Network (DNN) for real 
time AI processing 
power. With over 20 
TFLOPS of computational 
power, Visconti-5 is 
capable of enabling 
vision processing with 
low power in a small 
form factor.  
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2 EDGE COMPUTING IN INDUSTRIAL MACHINE VISION 

Industrial machine vision has traditionally used edge computing. Over the last four decades this 
has taken the form of a camera connected to a CPU over a communication interface like Ethernet 
(GigE), Firewire (IEEE 1394), Camera Link, and even USB 3.0. This CPU would reside in a purpose-
built processing system, like the Autovision II by Automatix (Figure 2-1) or an Industrial PC (IPC).  

 

Figure 2-1: Early Automatix machine-vision system "Autovision II" at "Technology '83" trade show in 
Israel. Obtained from [6].  

Traditional computer (i.e. PC) vision systems generally comprised a lens, a camera, a frame 
grabber (a specialized circuit board designed to capture or "grab" individual images from the 
camera and send them to the computer as a single still image), a computer and machine vision 
software that analyzes the still images (preferably in real or near-real time). As computers and 
camera technology progressed, the form factors became smaller and frame grabbers were 
largely integrated into cameras (as shown in the GigE Vision camera in Figure 2-2), enabling the 
edge computer to be located closer to the camera itself and in more rugged environments.  

 

Figure 2-2: National Instruments CompactRIO ruggedized controller and camera. Obtained from [7]. 



Optimal Use of Cloud and Edge in Industrial Machine-Vision Applications 

 6 

As computing power increased, so too did machine-vision algorithms and tools, but image 
capture, transmission and vision processing on an edge computer remained the same.  

For example, in manufacturing, machine vision originally included basic algorithms, including:  

• pattern matching that compared a portion of an image to a pre-defined template and 
calculated a correlation result (typically used to give a pass or fail judgement),  

• edge detection that could be used to count items (such as the number of sheets in a roll 
of tissue by counting the perforated edges),  

• defect detection, such as scratches on a polished surface and 

• distance measurements between points of interest (such as detected edges).  

Eventually, some machine-vision cameras (a precursor to today's smart cameras) could perform 
simple pattern matching by themselves, but their limited capabilities and relative cost limited 
their use to high-rate factory processes that handled a high number of products per cycle.  

With the advent of optical character recognition (OCR), machine vision began to be used more 
widely in industry. Vision systems could now recognize alphanumeric characters, and this 
enabled machine vision to perform a wider variety of tasks, such as reading serial numbers and 
testing the functionality of closed captioning in a television manufacturing plant, as in Figure 2-3.  

As with other algorithms used in machine vision, OCR has also now moved to neural network 
methods.  

 

Figure 2-3: Parabolic distortion correction to enable OCR. 

The last decade has seen growing interest in cameras that can do all of the machine vision 
processing on the device itself. Some of these cameras are shown in Figure 2-4. This is also 
considered edge computing. Labforge’s Bottlenose cameras can do most of the machine vision 
tasks on the camera itself, but can also operate in a hybrid setting where parts of the front-end 
processing are offloaded onto the camera and the rest to a nearby PC. In hybrid operations, 
Bottlenose can be connected over standard ethernet using its GigE Vision API to popular 
industrial libraries like MVTec’s HALCON® and Cognex’s VisionPro®. It has on-camera processing 
for feature-point detection & matching, dense depth and DNNs. Its powerful ISP makes it ideal 
for mitigating complex lighting situations such as those in manufacturing facilities and factories. 

These features allow integrators to use their existing programs on the PC while still being able to 
leverage the benefits of a smart camera.  
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Figure 2-4: Latest generation smart cameras have built in capability to process neural networks. This 
allows for unstructured and more flexible inspections. Obtained from [8] [9] [10]. 

2.1 STRENGTHS OF EDGE COMPUTING 

Low latency: One strength of edge computing in industrial machine vision is its low latency [11]. 
This is because some camera data can be stored and processed on the device or a nearby PC, 
rather than being sent to a remote data center [12]. 

Speed & internet connectivity: Edge computing is fast. Since the edge device is near the source of 
data, data can be sent back and forth quickly. Edge computing doesn’t require uninterrupted 
internet to work all the time.  

Control & ownership: Companies that adopt edge processing and implement edge computing 
devices have control over that critical infrastructure. Since the companies own the edge devices, 
this allows them to modify the devices for their particular conditions. These modifications could 
include custom enclosures and backup power sources.  

Scalability: When the camera can compute at the edge, the system is inherently scalable, because 
as users add more cameras they are, by default, adding the required computational resources. 
They are no longer restricted by the computer resources of the central processor. 

2.2 LIMITATIONS OF EDGE COMPUTING 

Processing power: Computation resources deployed in edge processors are typically lower than 
in a data center, so the same algorithms can take longer to execute. Similarly, constrained storage 
and memory inherent in edge computing also affects processing speed.  

Power consumption: DNN-based algorithms require intense computational power; this results in 
higher power consumption and heat dissipation. This is especially true when GPUs and FPGAs are 
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used. Cameras that include on-board vision processing engines using ASIC designs have lower 
power consumption while still excelling in Tera Operations Per Second (TOPS) per watt of energy 
consumed [12].  

Bandwidth limitations: Regardless of the architecture used to connect a camera to a CPU, the 
camera will always have bandwidth limitations. While this limitation is orders of magnitude 
better than sending data to be processed remotely, it does pose its own challenges. For example, 
a smart camera with a 1Gbps link has limited bandwidth for loading new models for AI, given that 
each model can be a couple of hundred MBs.  

Compression: DNN models usually need compression techniques like pruning and quantization 
to run on a resource-constrained edge device. This has hindered adoption as some accuracy loss 
is to be expected. Today, high-end smart cameras can run a full floating point uncompressed 
neural network with 50+ million parameters directly on the camera, as with Bottlenose.  

3 CLOUD COMPUTING IN INDUSTRIAL MACHINE VISION 

Remote data centers are well-suited for training machine learning models, given their large 
storage and compute capabilities. Personal computers are not ideal for this task [13].  

3.1 STRENGTHS OF CLOUD COMPUTING  

Scalability: Cloud computing capabilities are infinitely scalable. Users are not limited by physical 
space, compute, power consumption or memory. Cloud computing capabilities allow users to 
add more compute or memory resources with a single click. Users are limited only by their 
operating-expense budgets.  

Capex vs opex: Capital expenditure (capex) is more suitable for edge-computing investments, 
whereas operating expenditure (opex) is more suitable for cloud-based infrastructure. Cloud 
companies offer storage, elastic compute instances and enterprise applications [14] via pay-as-
you-go models, i.e. opex. This is easier for teams seeking approval from senior leadership. Opex 
also doesn’t affect fiscal reports–keeping the shareholders happy. 

Versatility and diversity: Cloud computing offers remote data center versatility and diversity, 
through nearly unlimited types of CPUs and GPUs available at the click of a button, as well as 
software available online. In this case, users are not only buying the app from marketplaces, but 
also renting the computer on which the app will run.  

Improved access: Remote data centers allow for improved access. Since they are remote they let 
a user access information from anywhere, anytime they want [15]. 

Global workforce: Given that cloud computing capabilities allow updates and services to be 
implemented 24/7 companies can make full use of their global workforce [15].  

Access to advanced software services: Cloud computing capabilities allow quick access to current 
versions of software [15]. 
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3.2 LIMITATIONS OF CLOUD COMPUTING 

Latency: Cyber-physical systems (CPS) rely on data from sensors to perform computationally-
intensive tasks including decision making, learning and prediction, and data analytics [16]. 
Industries like smart traffic, AgTech, and manufacturing have communication latency 
requirements that can’t be subject to delays. In the time it takes to relay data to the data center 
for processing and back, critical decision-making can be delayed. Even having data travel to a PC 
next to the sensor can cause enough latency to affect the system negatively, especially in 
manufacturing facilities where producing larger quantities every minute is of the utmost 
importance. Ultimately, latency can lead to significant losses. 

Cybersecurity & privacy risks: For a cloud system to be considered secure it must achieve 
confidentiality, integrity and availability of outsourced data [17]. For data to be processed in the 
data center it must be encrypted and sent to cloud-based repositories. Saving consumer 
information from multiple consumers remotely could compromise the confidentiality of data 
[18]. Similarly, the mystery surrounding how cloud processing works, can put data owners at risk. 
Often, data owners lack the technical know-how to understand their data’s physical location [18].  

Legal complexity: The cloud comprises both hardware and software. The hardware portion of the 
cloud is subject to ordinary property rules; software falls into the intrinsically complicated 
framework of intellectual property rules [19]. The international nature of cloud computing, with 
data warehouses storing data from users in different countries with different legal frameworks, 
further complicates these legal issues. Copyright protection, database protection, data 
sovereignty, patents, and trademarks all need to be considered when evaluating the legal 
ownership of data, programs and hardware associated with cloud computing [19].  

Other factors: It is estimated [18] that by 2025 nearly 50 billion IoT devices will be in circulation, 
which will weigh heavily on cloud service providers to ensure fast and secure access to data. 
Cloud computing investments often suffer from pushback from CFOs since they have a high 
probability of increasing operating expenses [20]. Using a cloud computing system is typically 
subject to subscription fees paid to the cloud service provider(s). Moreover, skipped or missed 
maintenance fees have the potential to lead to missed updates (new features, bug fixes) [21].  

4 DECIDING WHERE THE EDGE LIES IN INDUSTRIAL MACHINE VISION 

Once it’s clear that models are trained in the cloud and vision processing will take place at the 
edge, designers must now decide where this “edge” lies. There are three options: 

4.1 INDUSTRIAL PC 

A large variety of cameras can be integrated with an IPC and they cost less than smart cameras 
shown in Figure 4-1. Most cameras either follow the GigE Vision® standard or the USB3 Vision 
standard, and can be swapped out. However, the lower cost of the cameras is offset by the high 
price of IPCs capable of vision processing. These IPCs are also large, have high power consumption 
and dissipate a substantial amount of heat, making them difficult to integrate in a factory setting. 
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Figure 4-1: Camera + GPU enabled IPC via GigE Vision or USB Vision. Obtained from [22] [23] [24]. 

This camera + IPC architecture would eventually talk to a PLC via an industrial bus like 
EtherNet/IP™, Profinet® or EtherCAT® to communicate the detection information. The PLC can 
then react and control actuators. 

4.2 SMART CAMERA 

A smart camera connected directly to industrial equipment like actuators, warning lights or PLCs 
has many benefits. They are small compared to the size of an IPC and typically don’t generate as 
much heat. They are self-contained and therefore easy to set up. A couple of the more popular 
smart cameras are shown in Figure 4-2. 

However, there isn’t a huge variety of smart cameras to choose from. They can be expensive and 
require ongoing licensing. Programming method for smart cameras is not standardized across 
vendors and so cannot be switched out quickly or cost effectively. Integrators and factories 
typically buy into a certain vendor’s product line.  

 

Figure 4-2: Proprietary smart cameras. Obtained from [5] [7]. 

4.3 SMART CAMERA + INDUSTRIAL PC 

Recent updates to the GigE Vision standard have now included the ability to send data from smart 
cameras to IPCs. This approach would allow integrators and factories to use smart cameras 
without being tied into any particular vendor. In this mode of joint sensing, the majority of the 
processing is happening on the smart camera, which allows for factories to use smaller IPCs. 
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Smaller IPCs have many benefits including lower cost, better ruggedization and less heat 
dissipation than its larger counterparts making them suitable for factory environments.  

There is a limited variety of smart cameras that follow the GigE Vision industrial standard, but 
this number is growing. One such example is shown in Figure 4-3, where multiple Bottlenose 
cameras can be connected to a $500 fanless IPC. Smart cameras with GigE Vision can still be 
swapped with regular GigE Vision cameras if the IPC is upsized. This would provide the integrators 
and manufacturers some assurance for software longevity.  

 

Figure 4-3: Smart camera + compact IPC via GigE Vision. Obtained from [25]. 

4.4 CHOOSING THE RIGHT SOLUTION FOR YOUR APPLICATION  

Identifying the application and scenario are key factors when it comes to deciding which solution 
is most appropriate for a given use case. In small factories where only a few cameras are required 
for vision, a good solution is likely the smart camera with light edge computing capabilities. 
However, this changes when we consider large factories in need of hundreds of cameras. In this 
scenario, the regular camera using heavy edge computing and remote data center could be a 
better choice because it:  

• reduces the capex, 

• simplifies maintenance and software upgrades, 

• suits multi-source big data analysis and  

• increases scalability.  

5 CONSIDERATIONS FOR MACHINE VISION USING AI 

When using artificial intelligence (AI) for machine vision, model classification services and model-
training services operate in different time frames, so it is important to consider where these 
services will be located. By considering the strengths and limitations of edge and cloud computing 
with respect to both machine vision and AI, optimal placement of these AI services can be 
determined. Figure 5-1 highlights the use of cloud computing for uploading historical data, while 
emphasizing that edge processing should be used for real-time applications. Because images can 
be transmitted from the image capture equipment to edge processing over local ethernet, real-
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time vision analysis (using classification construction models) can be performed, while historical 
vision data can be sent to cloud computing services for more compute-intensive image 
identification and prediction modelling. These updated models can then be fed back to the edge 
to improve the real-time vision analysis. 

 

Figure 5-1: A visual representation of an intelligent machine vision model for defective product 
inspection. Obtained from [4]. 

6 CONCLUSION 

Companies using industrial machine vision should adopt the flexibility and scalability offered by 
cloud computing for training their machine learning models. Edge computing should then be used 
as much as possible for the real-time industrial tasks.  

This paper has outlined some considerations for where computation should be performed. 
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